
NAVAL POSTGRADUATE SCHOOL
SMonterey, California00

-

~ADO DTrC

AELECTE
2 1 F EB 1989

TIIESIS

ARGOS: DESIGN AND DEVELOPMENT OF OBJECT-

ORIENTED, EVENT-DRIVEN MULTIMEDIA DATA BASE

TECHNOLOGY IN SUPPORT OF THE PAPERLESS SHIP

by

Kevin F. Duffy and B. B. Giannotti

December 1988

Thesis Advisor: C. Thomas Wu

Approved for public release; distribution is unlimited.

89 2 21 086

Unclassified
Security Classification of this page

REPORT DOCUMENTATION PAGE
Ia Report Security Classification Unclassified lb Restrictive Markings
2a Security Classification Authority 3 Distribution Availability of Report
2b Declassification/Downgrading Schedule Approved for public release; distribution is unlimited.
4 Performing Organization Report Number s) 5 Monitoring Organization Report Number(s)
6a Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (If Applicable) 37 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city. state, and ZIP code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
8a Name of Funding/Sponsoring Organization 8b Office Symbol 9 Procurement Instrument Identification Number

(If Applicable)
9c Address (city, state, and ZIP code) 10 Source of Funding Numbers

i i Title (include Security Classification) Argos: Design and Development of Object-Oriented, Event-Driven
MultiMedia Data Base Technolo, in Support of the Pa!Verless Ship
12 Personal Author(s) Kevin F. Duff' and B. B. Giannotti
13a Type of Report 13b Time Covered 14 Dute of Report (year, month,day) 15 Page Count

Master's Thesis From To December 1988 185
16 Supplementary Notation The views expressed in this thesis are those of the author and do not re ect the official
policy or position of the Department of Defense or the U.S. Government.
17 Cosati Codes 18 Subject Terms (continue on reverse if necessary and identify by block number)
Field Group Subgroup Object-Oriented, Event Driven, Multi-Media Data Base, Paperless Ship,

I IHyperMedia
19 Abstract (continue on reverse if necessary and identify by block number

-,Argos is a prototype multimedia database developed as both a Battle Group Commander's assesment tool and
a shipboard data management tool. The current prototype developed by using HyperCard/Macintosh
demonstrates an effective utilization of off-the-shelf technology to solve real world problems commonly faced by
the United States Navy. The ultimate goal of Argos is to provide database support for the"Paperless Ship".

20 Distribution/Availability of Abstract 21 Abstract Security Classification
E unclasifiednlimited 1 same as report DTC users Unclassified

22a Name of Responsible Individual 22b Telephone (Include Area code) 22c Office SymbolT.
C. Wu (408) 646-3391 52Wq

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted security classification of this page

All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited

Argos: Design and Development of Object-Oriented, Event-Driven MultiMedia Data Base
Technology in Support of the Paperless Ship

Kevin F. Duffy
Lieutenant, United States Navy
B.S., Purdue University, 1980

and

B. B. Giannotti
Commander, United States Navy

B.S., United States Naval Academy, 1972

Submitted in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
December 1988

Authors: 4VA 4 4 f4
Kevin Forrest DuffV4,

Approved By: r
C. Thora, Thesis-A-disor

David K. Hsiao, Second Reader

Robert B. McGhee, Chairman
Department of Computer Scie ce

Kneale T. Marsh, 1-,0
Dean of Information and Policy Scienc

ii

ABSTRACT

Argos is a prototype multimedia database developed as both a Battle Group

Commander's assesment tool and a shipboard data management tool. The current

prototype developed by using HyperCard/Macintosh demonstrates an effective

utilization of off-the-shelf technology to solve real world problems commonly faced

by the United States Navy. The ultimate goal of Argos is to provide database

support for the "Paperless Ship".

.4 °o :

Dist' .S t.e
Di t I S.p:'z ia,

Eif

TABLE OF CONTENTS

I. INTRODUCTION...1

11. THE PROBLEM STATEMENT... 6

II. THE PROGRAMM4ING ENVIRONMENT: HYPERCARD................. 9

IV. IMPLEMENTATION ... 19

V. CONCLUSIONS.. 24

REFERENCES .. 31

APPENDIX A ARGOS STACK... 32

APPENDIX B APL STACK .. 118

APPENDIX C CSMP STACK... 120

APPENDIX D EQUIPMENT STACK 130

APPENDIX E COSAL STACK...132

APPENDIX F]HELP STACK ... 134

APPENDIX G FORMS STACK.. 142

APPENDIX H DEVELOPERS SCRIPTS 153

BIBLIOGRAPHY.. 175

INITIAL DISTRIBUTION LIST .. 178

iv

I. INTRODUCTION

'United States Naval Warships by design are self-sufficient entities in both their

war fighting capabilities and their ability to support sustained open ocean operations.

It has been determined that an Oliver Hazard Perry guided missile frigate (FFG-7

class) with a crew of 185 men, nominal 3500 ton displacement, and overall 445 foot

length carries in excess of 20 tons of paper in direct support of the ship's mission

and her crew ,{fTe.-pp. 157-t- The onboard paper includes executive

correspondence, required reports, training records, performance evaluations,

medical/dental records, financial management records, technical manuals, equipment

operator manuals etc. The reduction of this bulk of paper is the quickest way for the

U.S. Navy to significantly improve its war fighting capability. Besides the obvious

increase in war fighting potential of the ship by replacing the 20 plus tons of paper

with missiles, torpedoes, projectiles, and other offensive or defensive equipment, the

reduction in manpower required to maintain the paperwork infrastructure would be

substantial. This thesis will explore the feasibility of the paperless ship.'- '

Simple elimination of paper from the ship, of course, is not a solution. We must

maintain the informational content of the current onboard paperwork while physically

removing it from the ship. In other words, we would like to convert the entire

paperwork infrastructure into some electronic media and provide an automated

system that manages all of this newly stored data. The concept of a "paperless ship"

was first made popular by a former director of Surface Warfare, VADM J.

MetcalfUSN (Retired). It was generally believed that the paperless ship could not

be developed. It was a sweet dream that would not happen. The reason for this

pessimism, we believe, stems from the mind set of the people who attempted to

synthesize a solution by utilizing the wrong technology.

In the DoD community, relational database management systems (DBMS) are

widely held as the solution to the information management problem. In fact, many

agencies under the DoD umbrella require that future (non-numerical) application

software must be developed by using a relational DBMS that supports the SQL

query language. The relational DBMS is an improvement over older database

management systems such as hierarchical and network DBMS, but it is not a panacea

for all data management problems. The relational DBMS is definitely not a solution

for the paperless ship. It is the wrong technology.

There are several reasons why the relational DBMS is the wrong technology.

First, the semantics involved in the non-tactical operations (supported by the onboard

paper infrastructure) are far too complex to be modeled by the relational DBMS.

Second, information conveyed by onboard paper comes in various forms such as

images, variable-length text, graphics, etc., while the relational DBMS is only

capable of handling fixed-size records. Third, the query language supported by a

relational DBMS is too difficult, if not impossible, for the average sailor to utilize.

Lastly, incremental modular construction (i.e., building piece by piece) of the

system is not practical with the relational DBMS because of the difficulty involved in

redefining the relationally defined information structure.

Failure of the relational DBMS does not mean that the paperless ship cannot be

realized, just as Babbage's failure to use a steam engine to run his first computer did

not mean that the computer was beyond reach. By applying the right technology, we

can take a substantial step toward fulfilling the dream of the paperless ship. But is

there a technology today that can make the dream come true? After all, it took about

2

100 years since the idea was conceived to apply the right technology (electricity) in

building the first real computer. We believe there is a technology today and have

built a prototype system to demonstrate that this technology is a viable solution.

What we need to build the paperless ship is a multimedia DBMS, a database

management system capable of handling multimedia data including images, signals,

and text. The ideal multimedia DBMS for the paperless ship must have a easy-to-

learn and easy-to-use interface for querying and retrieving data, allow modular

construction of a database, and be operable under various operating systems.

Unfortunately, there is no multimedia DBMS, capable of supporting traditional

database functions such as concurrency, security, recovery, etc., beyond managing

multimedia data, available today. We, therefore, decided to employ HyperCard m 1

for our prototype.

The HyperCard choice was predicated on several features that other development

systems do not offer. Specifically, HyperCard's object-oriented properties support

ease of development and portability and reusability of modules. In addition, these

same object-oriented capabilities provide the developer with a rapid, interactive

prototyping environment that greatly enhances debugging and culminates in

significantly increased robustness than in conventional programming environments.

HyperCard provides the developer with a great deal of power and a rich set of

development tools, that when combined establish a degree of compatibility and

cognitive richness found in few other environments. The human factors engineering

principles and human interface technology found within the Macintosh operating

lHyperCardTm , HyperTalkm, Stackwarem and Macintoshl are all trademarks
of Apple Computer Incorporated.

3

system have been extended into HyperCard. This inclusion allows easy dev -opment

of applications that provide the user with an instinctively friendly look and feel. The

importance of the look and feel is fundamental to a significantly reduced learning

curve and a dramatically increased level of usability for applications developed in the

HyperCard environment. The rich set of development tools that extend beyond

HyperCard enable the developer to easily acquire, manipulate and import text, sound

and graphics into HyperCard without data conversion.

The availability, compatibility and cost of peripheral hardware for the Macintosh

was also a major consideration. All graphics utilized in this application were scanned

utilizing a two hundred dollar ThunderwareTM ThunderScan® and the human voice

speech was digitized using a two hundred dollar Farallon Tm MacRecorder® 2. CD

ROM technology is also available and HyperCard has built in capabilities for

exploiting this technology. Video driver software, which interfaces with HyperCard

is also commercially available for many models of VideoDisk.

To demonstrate the viability of a multimedia database in support of the paperless

ship project, a functional program called Argos, named after the most famous ship

builder in Greek mythology, has been developed and tested. Due to limited time and

resources, this implementation was aimed primarily at the maintenance function:

specifically the LM2500 gas turbine engine. However, it must be noted that Argos

is not designed to demonstrate applicability of a specific function, rather its purpose

is validate the integration possibilities across the entire functional spectrum of military

units both at sea and ashore.

2Thunderscan® is copyrighted by ThunderwareTm, and MacRecorder® is
copyrighted by Farallon Computing Incorporated.

4

This thesis is organized as follows. Chapter HI discusses the paperless ship

problem in detail. A brief overview of the programming environment and its inherent

language is presented in chapter H. Chapter IV provides implementation details.

Conclusions and recommendations for follow-on thesis work are presented in

chapter V. All code and graphical images are contained in the appendices.

5

HI. THE PROBLEM STATEMENT

In the age of long-range over-the-horizon tactical weapon systems, three

dimensional radars and state of the art propulsion plants, one of the least glamorous

and most ea :'y overlooked tasks is that of automating the nontactical functional areas

in a shipboard environment. Efforts that have been ongoing for a number of years to

implement a Navy wide program to directly support shipboard supply and

maintenance functions have had limited success; additionally, very little has been

done to automate routine shipboard administration, personnel, medical and

operational functions. From an ISIC's (Immediate Superior in the Chain of

Command) perspective, whether that be the Battle Group Commander or a Desron

(Destroyer Squadron) Commander etc, limited information access on a real time basis

is a significant deficiency. As has been demonstrated time and again, self sufficiency

and integrated Battle Group Logistics during any operational contingency is a comer

stone to the overall success of deployed units. The purpose of Argos is to enhance

the ISIC's information access by giving him instant access to the nontactical

functional data bases from which his ships are operating. Whether the issue is

locating a spare part in one ship of the force to correct a casualty in another,

identifying a trained technician to provide a technical assist, collecting retention

statistics, checking the training posture of the ships under his command, or

assembling information to answer any of a myriad of questions that are typically

solved by cluttering already overburdened communications nets, Argos has the

potential to immediately alleviate if not solve the information access problem facing

the ISIC. This alone would positively contribute to reducing a ship's administrative

overhead of responding to multiple queries.

6

While the problem of information access is obviously exacerbated by geographic

location, it is not limited to the ISIC. Each ship's Commanding Officer faces similar

problems when attempting to assess his maintenance related support posture; training

status; operational reacnness; medical and dental readiness etc. By eliminating the

inherent time delays of manually collating information, individual productivity will

sharply increase.

Other issues faced by the Navy include the per installation hardware costs.

These costs quickly become a major issue when a single installation for the SNAP

II system utilizing the Harris mini computer currently installed in most combatant

ships today costs $250,000 and it provides a mere four work stations, where as the

system we are proposing runs on micro computers that cost $500 to $1000 per

copy. Training costs are another consideration. These costs in terms of both time

and money are significantly higher with the SNAP II Harris installation. For

example in 1983 when this system was first introduced to the fleet, sailors designated

as "system users" had to be sent to a facility in Texas for two weeks of hands on

training to guarantee proficiency at no more than the user level. While the absolute

costs associated with user friendliness are reflected somewhat in training costs, they

actually go much further and are more difficult to categorize. Specifically we do not

define menu driven or command line systems as user friendly. The psychological

resistance of the user to a non user friendly system is particularly difficult to

quantify, although the bottom line result is a substantial loss in productivity. The

lack of user friendliness of currently installed shipboard systems results in an

inability of the user to realize the full potential of the system which in many cases

ultimately creates more work than the older manual system. Because most systems

purchased for fleet introduction do not represent proven off-the-shelf technology,

7

user base to verify the system hardware and software. This alone detracts from

system robustness; additionally, further degradations are experienced as a result of

attempts to model complex data with systems that are technologically incapable of

performing this function. Consequently, the lack of robustness manifests itself to the

user as an inability to perform as advertised or desired.

Correctness of data is crucial to the success of any database system. A key

element in verification of the data's correctness is the ability of designated personnel

to easily view the data in a discrete isolated format that is familiar to the viewer.

Current systems do not provide this capability, thus a preponderance of the data that

fleet personnel are working with is either incomplete or incorrect. A specific example

is the SNAP II system. Five years after its introduction to the fleet, substantial

amounts of money are still being dedicated to correcting the SNAP II databases.

8

III. THE PROGRAMMING ENVIRONMENT:

HYPERCARD

In this chapter we describe our development tool HyperCard/HyperTalk and

show how conducive it is for modeling complex data types and developing

multimedia databases. A relatively new programming environment called HyperCard

was developed by Apple Computer® Incorporated to run on the Macintosh family of

computers. It is presently being marketed as an extension to the Macintosh operating

system. Version 1.2 is used for the development of this thesis. HyperCard is an

event-driven, object-oriented programming environment that is driven by messages

to and from objects. Actions are initiated in response to events which then send a

chain reaction of messages from one object to another. HyperCard, which contains a

general purpose programming language called HyperTalk, provides powerful

painting tools, editing functions and semiautomatic program development.

HyperCard is a multimedia development system that allows developers to easily

integrate graphics, text and audio into an object-oriented environment.

HyperCard's interface is very intuitive and easy to learn; both for the developer

and the user. The low end of the development spectrum allows non programmers to

create very professional looking stacks without writing a line of code. At the high

end of the development spectrum, programmers may create powerful functions and

commands written in Pascal, C, or Assembler which may not be currently available

in HyperTalk's rich instruction set. HyperCard is a tremendous labor saving

intuitive developmental environment that has extended the concepts of integration in

software development.

9

HyperCard, which uses the metaphor of a stack as an object that can hold both

processes and data, exists only in the context of a stack. A stack should not be

confused with the classical data structure stack in which elements may only be placed

on or removed from the top. A stack is more analogous to a stack of three by five

cards in which cards may be accessed at any point. HyperCard supports

development of stacks that allow data, which may be any combination of text,

graphics and sound, to be stored, linked, searched and viewed. This is the basis for

multimedia database applications. Information may be linked relationally within a

stack or from one stack to another. HyperCard was not designed to replace

traditional relational databases; however, if integrated properly it can greatly enhance

their capabilities as a front end processor. As a stand alone multimedia database

developmental tool, HyperCard is clearly a powerful user friendly system that allows

applications to be constructed in minutes that would require a monumental effort in a

conventional programming language.

As an object-oriented programming environment HyperCard has pre-defined five

objects. They are buttons, fields, backgrounds, cards and stacks. Some objects

have a unique HyperCard generated ID which will never be repeated in the same

stack. All HyperCard objects can send and receive messages; have properties

including script which is code associated with that particular object; and have a

visible representation that may be set on or off. A button is an area on the card that

is accessible with the mouse pointer. Buttons may be graphical, textual, a

combination of both or totally invisible. When the user clicks the mouse pointer on a

button, a message will be sent to the button and the script of the button will be

executed. A field is an area to store textual data on a given card. Fields are not static.

They may be adjusted to any size or appearance desired. Field scripts, like all scripts

10

scripts in HyperCard, are also event driven. Backgrounds are objects that cards

oftentimes share giving them a homogeneous look. An example might be the visual

representation of a ROLODEX card [Ref. 2:p. 112]. Cards are the objects on which

fields, buttons and backgrounds reside. One to several million cards form a stack.

The stack along with the four objects it contains (i.e., cards, backgrounds, buttons

and fields), and any attached resources is the executable program.

Modularity is a property of objects in HyperCard. Once an object is created it

may be moved in its entirety to another stack with its graphical appearance, scripts

(program code) and resources (predefined object code i.e., icons, dialogs, sound

etc.) This was extremely important in facilitating rapid prototype development and

code reusability.

Message sending is a characteristic of an object-oriented programming

environment. HyperCard generates messages, called system messages, which are

sent to objects in response to certain program events. Consequently, the HyperCard

environment allows development of databases with procedural attachment which

readily lends itself to modeling of real world data. Procedural attachment is the

attachment of procedures to data elements and containers which provides behavioral

characteristics in the form of code. It enables development of multiple data

associations via dynamic and static linking; thereby resulting in the best of

conventional database (relational and hierarchical) technology associations.

Additionally, as a direct result of procedural attachment's ability to support modular

code in a fully specified high level language the developer enjoys the freedom of

semantic data modeling. Search, browse and reporting capabilities are established in

a similar manner.

11

Whenever script is executed a message is generated. The first object to receive

the message is the sending object and if it has a message handler (a subroutine in

HyperTalk) it will execute the handler. The script can also call the same message

handler from which it originated. This is recursion in HyperTalk. HyperTalk is also

capable of nesting. which would occur if handlerl in ObjectA calls handler2.

Capabilities that allow recursion and the creation of procedures as well as push down

data structures provide the developer with a full range of programming tools found in

more conventional languages such as Pascal or C.

HyperCard has two types of objects: transparent and opaque. Transparent

objects are virtually invisible, that is they allow the viewer to look down to layers

below the actual top layer. Opaque objects are solid; consequently, they block the

viewer from observing objects situated directly below. Every HyperCard object is

created in its own layer. Layers can best be visualized as ultra-thin sheets of clear

plastic [Ref. 2:pp. 109-110]. Since every object gets created in its own layer, the

layers are placed one on top of the other as the objects get added to the stack. Opaque

objects are visible through all layers of the stack regardless of their relative stack

position; unless however, they get covered by another opaque object in a subsequent

layer which would render the lower object impossible to be seen by anyone looking

down. Transparent objects allow the viewer to observe opaque objects below.

Buttons, which are a type of HyperCard object, can be layered into a stack like any

other object: whether transparent or opaque, buttons will react to mouse clicks

regardless of depth in a layer. If buttons are layered on top of each other only the top

button will respond to a mouse click. Visibility is a property which many HyperCard

objects possess. It is clearly different from transparency. That is, when an object's

visibility is set to false the object not only cannot be seen but is also inactive.

12

but is also inactive. However, attributes of an object, whose visibility is set to false

may be obtained or changed through the scripting language. Visibility and layering

together provide the developer with the ability to construct complex data structures

and establish inheritance of code by layering buttons on top of ono another and

passing discrete commands on to various layers. This is a very powerful tool that in

general facilitates compactness and reusability of code. Specifically, the invisible

button was essential for the development of Argos because it is the mechanism by

which the user is able to define a pathway to a desired piece of equipment,

subcomponent, or piece part. All that is required is for the user to click on a graphic

and Argos will respond by displaying a blowup of the selected graphic.

Background and card layers are the second category of layer in HyperCard.

Everything assigned to a background is active and visible on every card of that same

background in the stack, that is anything placed into a background design gets copied

onto every other card with the same background: this includes graphics, text, and

buttons. The programmer may choose to place graphics, text, or buttons onto a

specific card and have them visible only when that particular card is the top card in

the stack, by placing those objects into the card domain. All objects in the card

domain are in the very top layers of the stack with background objects lying below.

The card domain can also be called the foreground. Conceptually, it is very

important to note that card objects are visible and active only in their respective

layers, whereas background objects are visible and active for all cards sharing a

particular background. In terms of creating applications, this subtle difference

between foreground cards and backgrounds becomes an indispensable tool for the

programmer to hide certain action buttons from the user at different points of the

program by covering up an action button on a background card with an opaque object

13

on a foreground card. Of interest, background buttons can be created only one at a

time, each in its own layer, however, the user can not discern any difference between

the two buttons or the two layers because both opaque buttons are readily visible and

show no obvious indications of being in two completely different layers. Careful

manipulation of background and card layers enables the programmer to develop a

particular look and feel that results in very user friendly interfaces. This allows

complex modeling of data structures that are analogous to everyday metaphors.

System protection in Argos, which is important for establishing program and

data integrity, is easily supported by HyperCard because of its inherent stack

protection mechanism. Stack protection is provided by the system. The level of

protection is determined by the programmer and is assigned via the PROTECT

STACK menu which ostensibly allows the programmer to choose any level of

protection desired. Passwords are available options that can be used to protect a

particular stack. The password need only be entered once during a session to allow

access to a given stack. The system will remember that the user knows the correct

password once it is entered to eliminate the tedious requirement of reentering a

password on every attempted entry to protected stacks during a single session. A

more advanced level of protection exists by using the scripting language HyperTalk

which allows the programmer to limit the data which may be accessed down to the

data element level. This capability may be extended to password protection which

can be applied to protect a specific data element or a specific function vice the more

traditional login password protection schemes currently in use on Navy systems such

as SNAP II. The traditional login password protection schemes tend to be more

limited than the Argos password system because the HyperTalk scripting language

allows complete flexibility in limiting users to specific functions or data elements.

14

Another extremely important aspect of HyperCard is its linking ability.

HyperCard links are a method of establishing a unidirectional pathway from one card

to another. Links may be between cards in the same or different stacks regardless of

either card's relative stack position. Bi-directional links can also be programmed by

inserting a unidirectional button on each card such that each card has a pathway to the

other. To establish links between cards in the same stack either the unique card

identification number is used as a destination address, or the card name can be used.

Links to cards in different stacks are exactly the same with the addition of the new

stack name to the destination address. HyperCard linking enables the programmer to

implement true conceptual relational database applications, that is, data never needs

to be duplicated as in most other conventional data base systems, i.e., there is no data

redundancy. This is accomplished by HyperCard's ability create links via unique

identification numbers that are independent of data content.

HyperTalk is a general purpose programming language that contains a robust set

of commands and functions. It is also a special purpose language that tends to be

better for some programming tasks than most other languages, such as construction

of visual databases and educational systems. It is a very intuitive and natural

language which tends to favor nonprogramers in its grammatical style. This concept

is further extended by the language property that provides programmers world wide

the capability to program in their native language. The object-oriented nature of

HyperTalk makes the scripting portion of the programs compact, extremely easy to

debug and very portable from one program to the other. The finished programs tend

to be very intuitive for the user to operate and have a visual look and feel that in other

languages would be very difficult to obtain. This makes HyperTalk a very labor

saving programming language. One of the most powerful features of HyperTalk are

15

the XCMD's and XFNC's that allow virtual unlimited extendability. When

HyperTalk was created two very powerful interface capabilities were installed called

XCMD (external command) and XFNC (external function). These two items enable

HyperTalk to search the resource fork of the stack for a command or function if it is

not found within the stack script. This capability provides virtual unlimited

extendability to the HyperTalk language. HyperTalk will search the resource fork of

the stack for an unknown command of type XCMD and likewise will search for an

unknown function of type XFNC for an unknown function. Therefore when an

author of a HyperTalk script wishes to extend the language of HyperTalk, he can

write the function or command in Pascal, C or assembler and move it into the

resource of the Stack where he wishes to use it. Consequently, extensions to the

HyperTalk language are always carried with the individual stacks that require them.

Selected commands and functions from a library of XCMD's and XFNC's are easily

moved in and out of Stacks as desired.

The HyperTalk scripting language is totally unique among programming

languages. However, it does derive its basic approach from Smalltalk and Pascal

resulting in an overall appearance very similar to that of a natural language.

Command structures are english-like sentences or phrases such as repeat five times

or put the answer into it. HyperTalk is extremely forgiving in syntax and it allows

multiple command structure variations. This is a very important distinction in terms

of ease of programming and project implementation of the Argos prototype because

it will allow utilization of in-house Navy programming assets which would be a

significant cost savings.

Functions in HyperCard may be one of three types: HyperTalk defined, user

defined, or XFNC. HyperTalk functions behave in the same fashion as

16

conventional programming language functions. When a function is invoked in

HyperTalk, the HyperTalk scripts are searched in a hierarchical fashion until it finds

a match. If it doesn't find a match then the resource fork is checked to determine if a

XFNC is ava able. This method of determining function location allows the

programmer to redefine system functions as well as define entirely new ones. The

ability to redefine the environment proved to be invaluable as this project progressed.

For example, amongst others, the "fid string" command had to be redefined to

maintain the "look and feel" we were attempting to create in Argos. The importance

of XCMD and XFNC can not be over stated. While HyperTalk is powerful enough

to handle most programing requirements, the ability to write XCMD and XFNC in

higher level languages such as pascal or C provides an extremely powerful tool.

This capability allows discrete external functions and procedures to be executed from

within Argos.

There are two sound commands available in HyperTalk, play and beep. Play

requires a SND type resource to be available in the stack for the voice parameter.

HyperCard originally came with four sound resources, Harpsichord, Boing, silence,

and Dialing tones. These resources are the voice in which the command operates.

The play command is used to play digitized sound or to play music from a string of

notes. Beep is used to invoke the system beep. Another common sound command

which is a XCMD called Talk 3. Talk, which uses another program called

MacinTalk 4, converts text or phonemes into speech. Both SND and the XCMD

3 The Talk XCMD was create by James L. Paul of Paul Software Engineering.

4 MacinTalk is a product of Apple Computer Incorporated.

17

"talk" were utilized extensively throughout Argos to appeal to the user's audio

sense as we continued to develop very user friendly "look and feel."

The most significant criticism of HyperCard is that its language HyperTalk is an

interpretive language. The interpretive nature of HyperTalk in several instances

noticeably slows execution; however, in other cases, such as searching or card

selection, HyperCard is phenomenally fast. HyperCard is a very large

developmental system and requires a minimum of 1 megabyte of RAM to operate. It

can display only one card of a fixed size, in black and white on the screen at a time;

however, the illusion of a smaller size card is very easy to implement. HyperCard

strays from the standard Macintosh interface guidelines, in that the applications

written in HyperCard are driven primarily by buttons vice the pull down menu style

of all other Macintosh applications. Some of the built in features which allow easy

access to the system routines, such as the answer command, have a one line text

limitation in the question variable. Many of these weaknesses have been remedied by

individual programmers and are readily available in the public domain in the form of

XFNC's (external function) and XCMD's (external command), which are written in

Pascal, C or Assembler and extend the HyperTalk language.

18

IV. IMPLEMENTATION

As designed and implemented the Argos prototype is based upon a series of

graphical stacks that allow the user to visualize images of what he or she is dealing

with. For example, rather than relying upon conveying the meaning of an LM2500

gas turbine engine and all of its component parts through a textual description, as is

required by conventional database schemes, Argos provides the user with a visible

graphic interface that is coupled with a technical textual description thereby reducing

the technical knowledge required to be proficient in using this software.

The stack construct allows strict adherence to modular design. This is critical to

any dynamic software system that is expected to be responsive to periodic updates

resulting from organizational changes, equipment additions and removals, personnel

receipts and detachments etc. By maintaining strict modularity, changes can be

implemented readily as they occur with no adverse side effects to other modules or

perturbations to other system users.

The user enters Argos at the Battle Group level which enables one to choose a

ship by name and ti' -n to choose one of the functional areas each of which is a

discrete stack. Six functional areas were modeled in Argos: maintenance, supply,

operations, medical, administration and personnel. This by no means was intended

to be all inclusive or static, rather it merely represents the types of functional areas

that may be modeled in the system. There are conceptually six virtual stacks (one per

functional area) for each ship in the Battle Group. Each functional area is represented

as a virtual stack because within each virtual functional area stack are the actual

individual component stacks. That is, each piece of equipment installed in any ship

modeled by Argos has its own stack that represents the myriad of subcomponents

19

that are integral to that piece of equipment. This demonstrates the modularity

referred to above. As equipment upgrades occur and components change, only one

stack needs to be updated, not the entire software system. This concept can be taken

a step further. When a new ship is under construction, a complete software system

such as Argos can also be installed by simply taking copies of the equipment

modules along with modules for the other functional areas and simply placing them

aboard the ship upon delivery to the Navy.

Argos has been developed to represent discrete functional areas common to

every ship of the Navy rather than limiting the implementation to a single facet or

functional area. Underlying the Argos system is the ability for complete integration

of data. This facilitates data sharing amongst the functional areas and enables the

user to make ad hoc queries because of the uniform interface that acts as a template

for the Argos system. From the Battle Group level this allows module integration

for such queries (i.e., list by name and pay grade all of the gas turbine technical

experts currently in the Battle Group). As a result of the modularity this entire

system is very dynamic and can be expanded to model anything from a 172 foot

diesel Minesweeper to a 1092 foot nuclear propulsion aircraft carrier by adding and

deleting modules as appropriate. The modularity aspect of Argos makes it reusable

software because discrete modules can be changed to reflect actual shipboard

changes. Since a small desk top microcomputer is being utilized, the software and its

computer can be literally hand carried or mailed any where in the world and be used

within minutes of receipt.

Modular design was crucial to the success of this project. HyperCard was very

important in this regard because it easily enabled us to achieve complete modularity

due to its ability to represent a hierarchical scheme, relational scheme and

! ! I ! 20

object-oriented scheme. Hierarchically it is able to represent the organizational

infrastructure of the Navy (ISIC to Unit). Relationally it is able to represent any of

the normal relations typically associated with conventional shipboard database

applications. Argos also contains object-oriented database capabilities because each

card contains both data and instructions.

Argos represents a mutimedia database. Graphics are utilized to represent

objects that heretofore were solely represented by textual descriptors or attributes.

Textual information is utilized to enhance the meaning of and further define whatever

object the user is currently viewing. Audio is utilized as an additional feedback

mechanism which is normally implemented solely in text if at all. When taken in

aggregate, Argos makes use of the underlying features of multimedia to create a

significantly more intuitive environment for the uninitiated or novice computer user.

Background buttons, which appear on every card of a stack that utilizes a given

background, are an integral part of the look and feel of Argos. Examples of these

background buttons include HELP, COSAL, Equip, CSMP, APL, Forms, Order,

Techman etc. See Appendices A thru H for further amplification. The HELP button

allows the user to quickly refer to a system reference manual should he or she get lost

while navigating through any portion of this system. The ORDER button enables the

user to automatically fill in and print out a requisition document for any piece of

equipment or sub component modeled. The AWR button provides the user with the

capability to automatically generate an equipment degradation report and to update the

CSMP (Current Ship's Maintenance Project) once the required parts have been

ordered. The TECHMAN button gives the user instant access to the pertinent

sections of the technical manual that apply to the piece of equipment he or she is

currently viewing. The COSAL, CSMP, EIC, and APL buttons allow the user

21

instant access to the entire ship's COSAL, CSMP, EIC, or APL for browsing should

that be desired. The miniature card button located in the upper left of every card

enables the user to return to the previous card viewed and in this manner can literally

back out of the graphical path just navigated. The ship button located in the upper

right comer of every card provides the user with the ability to return to the beginning

of the graphical hierarchy of the maintenance stack so that multiple components can

be investigated without having to exit and reenter the program. See Appendix F

(Help Stack) for further information on buttons and icons.

All graphic buttons are invisible so that they can be positioned over the various

graphics found on each card. For example, on each component card of the

maintenance stack the graphic in the upper left corner changes from card to card yet

the functionality of the button does not change i.e., to return the user to the previous

card viewed. Special buttons are also utilized throughout this program. On the

COMPRESSOR REAR FRAME/COMBUSTOR card the AIR SEALS button allows

the user to advance to a different card that displays the air seals hidden between the

compressor rear frame and the combustor and therefore not visible. Similarly, on the

HP COMPRESSOR STATOR cards the ALT VIEW button enables the user to view

different aspects of the HP compressor stator in order to see all sub components.

The HELP stack is an integral part of this entire program. It has been developed

to provide the user with an intuitive look and feel that will answer any program

specific questions that may arise at any level or point within Argos. HELP has a

search function that eliminates the need to page through the entire stack to answer a

single question and it fully defines the functionality of all background buttons.

Argos also includes all of the nontactical data files required by the maintenance

functional area as stacks. The COSAL (Coordinated Ship's Allowance List)

22

delineates every piece of equipment that ship is allowed to have installed. The APL

(Allowance Parts List) provides every repair part allowed to be carried in support of

the installed equipment. The EIC (Equipment Index Code) provides part numbers

for every subcomponent on a given ship. The FORMS stack has a card for every

form required by the Maintenance functional area for the conduct of day to day

business onboard any U.S.Naval warship.

In addition to the functionalities described above, several scripts were created in

order to automate the development process. For example one developmental button

was designed to rewrite all of the scripts on the graphics buttons on an individual

card. Another script was written to automatically retrieve card id's for linking

graphical parts to an associated card in the APL stack. See Appendix H for

developer script listings. This capability significantly enhanced the development

effort of Argos.

23

V. CONCLUSIONS

Argos has demonstrated that multimedia technology can be effectively used to

create functional useable systems with significant advantages over conventional

technology. Development time utilizing this technology is dramatically reduced due

to its object-oriented nature, system environment, and rich set of development tools

readily available throughout the development process. Prototype testing and

demonstrations have verified the user friendliness of this system. Software

maintenance on the Argos system tends to be relatively easy primarily due to its

modular design. Consequently, the ripple effect so often associated with making

changes to conventional software systems is totally avoided. Single component or

functional stack updates or replacements are quick and quite easy to implement

because there is very little data, if any, carried from one module to the next.

Unequivocally, the cost of this technology is a tremendous advantage. As

mentioned earlier, development, maintenance, and training time are greatly reduced

compared to software systems developed using conventional technology. The

Argos development software itself was also very inexpensive. For example, the

HyperCard software cost only fifty dollars and all other software tools utilized

throughout prototype development cost less than five hundred dollars. Argos was

developed on a Macintosh I with a 40 megabyte hard drive and a Macintosh SE with

a 20 megabyte hard drive. The Macintosh II, however was not necessary to develop

or run the completed system. A Macintosh plus or SE is quite sufficient to develop

and operate the system; however, a slight speed advantage is noticeable between the

Macintosh I and the SE and between the Macintosh SE and the plus. The Macintosh

II system of this configuration may be purchased commercially for less than $6,000

24

and the SE for less than $3,000. An Apple imagewriter printer was also required to

operate the scanning device. An image writer printer is commercially available for

less than $500. The audio and graphic digitizers cost less than $500 combined. In

order to fully implement this technology a mass storage device such as ROEM

(removable optical erasable media) must be incorporated and these are available for

approximately $2000 to $5000.

The level of user friendliness achieved in this implementation greatly contributes

to significantly reduced training time and associated costs. There is no complex

query language or command set for a user to remember, consequently a new user

with rudimentary keyboard skills could be proficient with the Argos prototype

system literally in a matter of minutes. This system requires only semantic or

recognition knowledge rather than syntactic or rote knowledge for the user to become

fully functional. Additionally, there is a uniform interface throughout Argos that

further reduces training requirements and enhances usability.

The data has been optimized as a result of the system design. It is not redundant

and may be further broken down into discrete stacks so that only the subset of

interest must be traversed to find a particular data element. Data relations such as

components or personnel must only be represented once and they may be freely

linked to other functional areas for access and retrieval. Most of the functional

operations are predefined by the implementation and new or altered operations may

easily be added.

The data for the most part is stored as an integral part of the program stacks and

are not discrete files. However, data is easily exported and imported from the stacks.

At this stage of development the search algorithm is fully developed to support ad

hoc textual queries; however, the ability to extract data from multiple stacks

25

simultaneously does not exist and is dependent upon the implementation of a

complex query language. Also, there is no system facility to allow multiuser

accesses and updates as is typically found in conventional data base technology. All

data can be stored in the ROEM format. Password protection in HyperCard can be

implemented to protect individual stacks as well as specific user functions such as the

approval feature in Argos to control the expenditure of funds when ordering repair

parts. While this technology is not designed to replace conventional database

technology, it does have certain advantages that make it very desirable for

applications such as Argos. Conversely, an application that requires thousands of

transactions a second would not be appropriate for development in a multimedia

programming environment.

Argos also offers a simplistic graphical interface to the shipboard supply

support system. While current shipboard systems such as SNAP II are attempting to

provide an interface to the supply system for maintenance related interactions, Argos

takes this a step further by providing the technician with a mutimedia interface that

uses the concept of user friendliness as its point of departure. By making the

system as easy as possible to utilize, individual productivity for all users will

significantly increase.

In terms of cost, Argos compares favorably. While systems currently installed

use relatively expensive one of a kind mini computers built upon older technology,

Argos is predicated on strictly off-the-shelf current, yet advanced, technology that is

readily available in the market place. In terms of hardware, Argos requires a micro

computer that is considerably less expensive as a capitol investment, yet for the

application under consideration micros are every bit as functional as the larger more

expensive mini computers. Micro computers have the added advantage of

26

significantly reduced space requirements for installation. With a much smaller

footprint, the entire micro installation can easily sit an a desk which is a major

consideration when discussing small combatants.

When considering unique one of a kind mini computer installations one must

also consider the availability or nonavailability of hardware system repair parts.

Unique hardware systems typically have unique repair parts which can lead to sole

source contracting. Sole source contracting normally is not advantageous to the

government and can lead to increased down time due to repair parts nonavailbility

and to increased costs due to a lack of fair and open competition. Unique computer

hardware systems that have very small user bases often times are dependent upon the

end user to identify bugs that have evaded the design engineers. This in itself

becomes a major factor in reduced productivity when utilizing a system that was

supposed to increase, not decrease, productivity.

When discussing off the shelf micro computer hardware systems, world-wide

parts and technical support are quickly identified as very important benefits.

Contracts for repair parts are easily bid utilizing full and open competition because

now there are third party vendors who can compete with the parent manufacturer to

supply repair parts at the best possible price to the government. Given the mobility of

a true blue water Navy such as our own, hardware technical support becomes an

issue if problems that can not be solved by indigenous assets become dependent

upon contractor support that must literally travel half-way around the world often

times under adverse geo-political conditions. When assessing the desirability of a

unique minicomputer hardware system versus an off the shelf micro computer

hardware system one must also consider the limited user base the mini computer

system has as opposed to the exceptionally large user base of the micro computer

27

system. With a user base that is orders of magnitude larger, inherent hardware

design problems are typically well identified and corrected long before their

installation in Naval ships. Additionally, as a direct result of having a world wide

user base, the parent manufacturer is considerably more dynamic in providing

technical support because that mechanism is already in place to support his other

customers. In essence the parent company must survive in the market place on its

reputation.

In terms of software development for the Argos system, the HyperCard

programming environment coupled with its indigenous programming language

HyperTalk have provided a means of easily developing complicated software

systems. Simply put, HyperCard in effect places layers of abstraction between the

programmer and the actual bit manipulation that goes into creating complex software

systems. Now for the first time government agencies are no longer tied by an

umbilical cord to software development consultants and their respective companies

because complex database applications can be developed using in house assets. In

an age of increased congressional scrutiny and obvious fiscal austerity it only makes

good common sense to utilize in-house assets for areas such as software

development, particularly when the Department of Defense continues to order mid-

grade military officers to the Naval Postgraduate School to follow a course of study

in any number of technical curriculums, one of which is Computer Science.

Utilization of military officers holding advanced degrees in computer science for

development of software systems similar to Argos rather than relying upon

contractors would have significant cost reducing ramifications. Development time

would also be sharply reduced because now the developer has a more intimate

28

knowledge of the end users of the system under development and a better feel for

how this system should interface to the big picture.

Another advantage of using off the shelf technology for software system

development is that by not having to completely develop a new system for each

application, development costs even for contractors would be sharply reduced

thereby passing real dollar savings on to the Department of Defense. As a prototype

and when fully implemented Argos is designed to be completely modular. This will

allow all new equipment procurement contracts to stipulate that the contractor must

deliver an Argos application for the equipment being delivered to the military thereby

eliminating the need for continued software development.

In a fully developed Argos system the capability will exist for allowing multiple

ad hoc queries of the various non tactical data bases for each ship individually, or the

Battle Group as a whole entity. The obvious advantages of developing similar

HyperCard systems for the military in general easily outweigh the disadvantages.

Specific areas that would support continued research in multimedia technology

include but are not limited to the following:

* Transport Argos to MS DOS, UNIX or some other operating system.
" Development of a multimedia semantic data model (MSDM).
" Conceptual design of the Navy's data requirement using MSDM to fully

support the paperless ship concept.
* Development of an Argos capability to share data files wi.h an operational

MICRO-OMMS system in Foxbase.
• Extension of Argos to fully develop one or more of the functional areas.
• Development of a complex query language interface capability.
* Conduct a feasibility study that would project the cost of a fully operational

Argos system.
* Investigate the size requirements for different configurations of the Argos

system.

29

* Conduct a study that would determine implementation and cost factors
associated with inclusion of ROEM technology.

* Develop Argos on a Next Computer in the Next Step Object-Oriented
Operating System which is also available on other than Next computer
hardware.

30

REFERENCES

1. Ruff, D., LCdr, USN, from: "The Advent of the Paperless Ship," Naval
Engineers Journal, July 1988, pp 157-159.

2. Goodman, D., The Complete HyperCardru Handbook, Bantam Computer
Books, 1987.

31

APPENDIX A

ARGOS STACK

32

%O% 0

w :r!4r>~ t:Ib.II

z z S
0

COCo

0. LL.

z

L 0
CIDC

Ch -
-AJ

o
. 1 4c

33

AIaL

04

4.

CC

43

o-- ------

IA

06

gCO

Iro~l

35V

0~ l~0
Uc

0

36

Raf

> ->o
w U)CI o

33

NM

. al

0 tji I I

0.
4f.

0) m !. --

4. - .A

- % L, I. -III I ."_-.-.

00

. E FAo .. iI

038
0 o LN A.

V w a =P

-*I

38

Nov

I S I1I

(I) LA "m . L

Me 4 04L I

.C w
C4 %AL. Mu L S

LA. I

4F,

E j
0 (JW~ 4,-

4~aHU) it]0 f VA oC6 L,
Agt;

o6 -4Iza AW;L

c3

CC

u 14
C IA

0))

C')L

LIU

0 0;

rs

& 40

CDC

0)*

CL 0

Lo*

0 C

00

I IV

o el *

oCL 0m

Ow'

41

0)r

ar 0

zz

00rnlUl

0) I42

CC
IQ
a) ria)

< E
I CD

00
- Im

U4

II

%-Of

- IA

- IA
* 0IA iE

0)0

'A

0 0
c0

I0 _

44

Vm

0 L
4-0.
Uu

0

00
I6.

U,

045

CI

oo

46

I 0
00

00

LOCO

C CO

07

L L

UU

E4

C0
@10

4)0

U0

a
0

L__

o. 0

(1) 0
00

Ln 0o
0
0

0.) 0

0
0

0

0 0~

u 4 4

48

CO

4-.
a)%

0

-0-0

o

L

L

E

oo
Q

=u w

49

o ILo

CDD
I-4

05

00

I0

0 EVE

0

U' ol

L0z

E
0I

0. 4

51

723

c~ow

00
- --------

52

V4

V n tic"

-

L 0~

E I.6

4

53

al
II

cicc

V)

L. 00*1
b.

54

II

- .6L M_____

0 6W

S* IL~ c.

xw

.w'

ZI-

ow

0 wkil

55

Ad
OE

Ln;iH

0

0)0

56

(D

CC Z)

0.

Lo

0) L _ L.

>i- U) 0

cn L..

I I I I I I I I

57

4v 0

0 40 No

0 u

La

VAD~O O~'

58

a))

L
u g,, 0

in c.)e

4) a)*4)

59

z

LCt)

E 0
a) >

c L
U. 0LC

>L LL u ~ 0

r

060

E
LC L

C.-

Li.. C

o- 0

L-

0.o)LL

.P- 61

*c
'00

CD C

0 ~ 0 U

CDGI- 0

CLC

0 E

62

(D) L
_ 0 0

0 Q

04I 0 E cn (nZ 0. 0

> L

(D L t.
C 4) PI',

0 LL
UU

L C 4) 4

63

SCRIPTS FOR STACK: Argos

* STACK SCRIPT ********* ***************

on openStack

global mode

-- mode may be any of the following types:

-- navigate - traverse through the graphical hierarchy

-- order - for ordering an item via graphics

put "NAVIGATE" into MODE

hide message box

hide menubar

set userlevel to 5

end openStack

on closestack

-- this handler will automatically compact stack

if the freesize of this stack > 0.15 * the size of this stack then

doMenu "Compact Stack"

end if

end closestack

on gohome

play "BYE"

end gohome

64

function CLICKLINE

-- this function will return the line number of a field where a

-- mousedown event has occurred

return trunc(((scroll of the target)-,

+ (item 2 of the clickloc) - (item 2 of the rect of the target-,

)) div the textheight of the target) + 1

end CLICKLINE

function JULIANDATE

-- returns julian date

put the date into CURRENT

convert CURRENT to seconds

put "1/1/W into FIRSTDATE

put char 4 to 5 of third item of the long date after FIRSTDATE

convert FIRSTDATE to seconds

put char 5 of third item of the long date into YEAR

return YEAR & (CURRENT - FIRSTDATE) div 86400 + 1

end JULIANDATE

** BACKGROUND #1: GRAPHIC ************************

on closecard

-- this handler will automatically reset cards to original state

-- if field "Description" is visible

65

if visible of field "Description" = true then

set lockscreen to true

hide field "Description"

repeat with i=I to the number of buttons

show button i

end repeat

show background button "sorry"

set lockscreen to false

hide msg

end if

end closecard

on ARGOSTALK x

-- this handier will speak in computer voice the text contained in

-- x. This procedure requires several TALK XCMD's and MacinTalk

-- must be in the system folder.

if hilite of background button "VOICE" = true then

TALK x, 160, 115

end if

end ARGOSTALK

on ciosebackground

-- reset Mode button

set name of background button id 40 to "Navigate Mode"

end closebackground

66

on opencard

-- this handler will speak in computer voice the text conatined in

-- x. This procedure requires several TALK XCMD's and MacinTalk

-- must be in the system folder. This procedure will be invoked

-- only if the individual card does not have an OpenCard Handler.

if hilite of background button "VOICE" = true then

TALK FIELD "NOMENCLATURE", 160,115

end if

show card picture

end opencard

on returnkey

-- this is a redefinition of the returnkey function

-- for the purposes of automating the find string command

-- so the user may simply hit return in order to find the next

-- occurence of a find string in both the description field or

-- the nomenclature field. HyperCard doesn't support this without

-- a custom handler.

if (char I to 11 of msg) = "find string" then

put the id of this card into tempid

if visible of field "Description" then

set lockscreen to true

send returnKey to Hypercard

67

if tempid <> id of this card then

go recent card

hide card picture

set visible of field "Description" to true

repeat with i=1 to the number of buttons

hide button i

end repeat

hide background button "sorry"

end if

set lockscreen to false

else

send returnKey to Hypercard

end if

else

send returnKey to Hypercard

end if

end returnKey

On GRAPHIC linenumber

-- this handler provides the functionality for the transparent

-- graphics buttons found on the illustrated parts breakdown.

-- This handler provides for both the navigate and the order mode.

-- The parameter linenumber corresponds to the sequence number of

-- the card button from which it was called. On the the equivalent

68

-- line number of the field "DATA" there are two elements which

-- are the GRAPHIC data link id of the next card in the Hierarchy

-- the second element is the id of the card in the COSAL stack which

-- contains some of the data associated with a given part.

put first item of line linenumber of field "DATA" into GRAPHICLINK

put second item of line linenumber of field "DATA" into DATALINK

GLOBAL MODE

if MODE = "ORDER" then

if DATALINK = " NONE" then

play "ITEM NOT FOUND"

exit GRAPHIC

end if

push card

set the cursor to 4

set LockScreen to TRUE

go to CARD ID DATALINK of STACK "COSAL"

put field "ITEM NAME" into ITEMNAME

put field "APL" into APL

put field "SOURCE CODE" into SOURCECODE

put field "COG CODE" into COGCODE

put field "MATI CONTROL CODE" into MATLCONTROLCODE

put field "STOCK NUMBER" into STOCKNUMBER

put field "UNIT OF ISSUE" into UNITOFISSUE

go to stack equipment

69

find APL in field "APL"

put field "UIC" into UIC

put field "WC EQPT" into WCEQPT

put field "EIC" into EIC

go to stack forms

go to first card of background "NAVSUP 1250"

domenu new card

put JULIANDATE() into field "REQN DATE"

put ITEMNAMIE into field "NOUN NAME OR REF SYM"

put APL into field "APL/AEL/CID"

put UIC into field IUIC"

put WCEQPT into field "WC"

put WCEQPT into field "DEPT1 NO"

put EJC into field TIJC"

put SOURCECODE into field "SC"

put COGCODE into field "COG"

put MATLCONTROLCODE into field "MCC"

put char 1 to 4 of STOCKNUMBER into field "FSC"

put char 5 to 13 of STOCKNUMBER into field "NUIN"

put char 14 to 15 of STOCKNUMBER into field "SMJC"

put UNITOFISSUE into field "U/I"

put "V" into field "YES"

set the cursor to I

set lockscreen to false

select text of field "URGY"

70

-- get data and stick into order card of stack forms

-- go to other stacks

-- go to order card (pop card to come back)

put "NAVIGATE" into MODE

play "NAVIGATE MODE"

else

if GRAPHICLINK = "NONE" THEN

PLAY "YOU HAVE REACHED"

ELSE

if GRAPHICLINK = "INCOMPLETE" THEN

PLAY "SORRY THIS AREA HAS NOT"

ELSE

PUT THE SHORT id of this CARD into UPLINK

VISUAL EFFECT ZOOM OUT

go to card ID GRAPHICLINK

-- the next line of code dynamically sets the uplink path of

-- the hierarchy

PUT UPLINK INTO field "UPLINK"

end if

end if

END IF

end GRAPHIC

71

** BKGND #1, FIELD #1: Description

on mouseup

-- this handler turns show field "description" off and

-- show the card picture with associated buttons on.

show card picture

set the highlight of background btn "VOICE" to true

set visible of field "Description" to false

repeat with i=1 to the number of buttons

show button i

end repeat

show background button "sorry"

end mouseup

** BKGND #l, FIELD #5: data ***** ** **

EACH LINE NUMBER OF THE FIELD CONTAINS TWO DATA ITEMS WHICH

-- CORRESPOND TO A BUTTON NUMBER. I.E. LINE 1 CONTAINS DATA FOR BUTON 12

-- THE FIRST ITEM IS THE CARD ID OF THE CHILD OF THIS ITEM

-- THE SECOND ITEM IS THE CARD ID OF THE CARD IN THE COSAL STACK WHICH

-- CORRESPONDS TO THIS ITEM

** BKGND #1, BLTON #1: TECHMAN

on mouseUp

-- this handler toggles between showing field "description" and

72

-- showing the card picture with associated buttons.

PLAY "TECHMAN"

if visible of field "Description" = true then

set the highlight of background btn "VOICE" to true

show card picture

hide field "Description"

repeat with i=1 to the number of buttons

show button i

end repeat

show background button "sorry"

else

hide card picture

show field "Description"

repeat with i=1 to the number of buttons

hide button i

end repeat

hide background button "sorry"

end if

end mouseUp

** BKGND #1, BUTTON #2: Order *********************************

on mouseUp

PLAY "PASSWORD PLEASE"

play "ORDER MODE"

GLOBAL MODE

73

put "ORDER"into MODE

set name of background button id 40 to "Order Mode"

play "MAKE A SELECTION"

ANSWER "MAKE SELECTION" with OK or CANCEL

if it = "CANCEL" then

Put "NAVIGATE" into MODE

PLAY "NAVIGATE MODE"

set name of background button id 40 to "Navigate Mode"

end if

end mouseUp

** BKGND #1, BUTTON #3: HELP *

on mouseUp

PLAY "HELP"

push this card

go to stack "ARGOS HELP"

end mouseUp

** BKGND #1, BUTTON #4: COSAL *

on mouseUp

PLAY "COSAL"

push this card

go to stack "COSAL"

end mouseUp

74

BKGND #1, BUTTON #5: EQUIP *

on mouseUp

PLAY "EQUIPMENT"

PUSH THIS CARD

GO TO STACK "EQUIPMENT"

end mouseUp

** BKGND #1, BUTTON #6: APL **

on mouseUp

PLAY "APL"

push this card

go to stack "APL"

end mouseUp

** BKGND #1, BUTTON #7: NAVIGATE

on mouseUp

PLAY "CSMP"

push this card

go to stack "CSMP"

end mouseUp

* BKGND #1, BUTTON #8: Sorry *

on mouseUp

PLAY "SORRY THIS AREA HAS NOT"

75

end mouseUp

** BKGND #1, BUTTON #9: New Button

on mouseUp

-- goes back to ship side view level

visual effect zoom out

go to card id 22260

end mouseUp

** BKGND #1, BUTTON #10: UP *

on mouseUp

-- goes up the hierarchy

visual effect zoom out

go to card id field "Uplink"

end mouseUp

** BKGND #1, BUTTON #11: Find *

on mouseUp

-- this handler provides for a modified search.

put the id of this card into tempid

PLAY "SEARCH"

ask"Please enter Search String."

if visible of field "Description" then

set lockscreen to true

76

set the highlight of background btn "VOICE" to false

put "find string" && quote & it & quote && "in field Description"-,

into msg

hide msg

send returnkey to hypercard

if tempid <> id of this card then

go recent

set the highlight of background btn "VOICE" to true

set lockscreen to false

end if

else

hide msg

put "find string" && quote & it & quote && "in field NOMENCLATURE" into

msg

hide msg

send returnkey to hypercard

end if

end mouseUp

** BKGND #1, BUTTON #12: LIBRARY

on mouseUp

PLAY "LIBRARY"

push card

go to card library OF STACK "ARGOS"

77

end mouseUp

** BKGND #1, BUTTON #13: EXIT *

on mouseUp

gohome

go home

end mouseUp

** BKGND #1, BUTTON #14: PRINT

** *********************** ***********

on mouseUp

play "PRINT"

doMenu Print Card

end mouseUp

** BKGND #1, BUTTON #16: FORMS

on mouseUp

PLAY "FORMS"

push mis card

go to stack "FORMS"

end mouseUp

* BKGND #1, BUTTON #18: VOICE

**************7*********************

78

on mousedown

-- toggles voice on/off

if the hilite of me then

ARGOSTALK "VOICE ON"

else

TALK "VOICE OFF', 160,115

end if

end mousedown

** BACKGROUND #2 ****

on openBackground

end openBackground

** BKGND #2, BUTTON #1: RETURN

on mouseUp

visual effect zoom out

go to card id field "Uplink"

end mouseUp

** BKGND #2, BUTTON #2: Sorry **** * *

on mouseUp

PLAY "SORRY THIS AREA HAS NOT"

answer "This AREA has not been modeled"

79

end mouseUp

* BKGND #2, BUTTON #3: EXIT *******************************

on mouseUp

GOHOME

go home

end mouseUp

* BKGND #3, BUTTON #1: Return

************it*** ******@*************

on mouseUp

pop card

end mouseUp

* BKGND #3, BUTTON #2: EXIT *

on mouseUp

gohome

go home

end mouseUp

** BKGND #3, BUTTON #3: PRINT *

on mouseUp

doMenu Print Card

end mouseUp

80

** CARD #1 ************************************

on opencard

visual effect iris close very slowly

PLAY START

PLAY "WELCOME TO ARGOS"

wait 4 seconds

go to next card

end opencard

** CARD #2 ************************************

on opencard

end opencard

* CARD #2, BUTTON #1: Halyburton

on mouseUp

visual effect zoom out

get short id of this card

go to card id 10931

put it into field "uplink"

end mouseUp

* CARD #2, BUTTON #5: ABOUT ARGOS

81

on mouseUp

visual effect zoom out

PLAY "ABOUT ARGOS"

push card

go to card id 5287

end mouseUp

** CARD #3 *

ON OPENCARD

play "FUNCTIONAL AREAS"

END OPENCARD

** CARD #3, BUTTON #1: Deck Profile

on mouseUp

visual effect zoom out

get short id of this card

go to card id 20294

put it into field "UpLink"

end mouseUp

' CARD #3, BUTTON #2: MAINTENANCE

82

on mouseUp

visual effect zoom out

PLAY "MAINTENANCE"

get short id of this card

go to card id 22260

put it into field "UpLink"

end mouseUp

** CARD #3, BUTTON #3: ADMINISTRATION

on mouseUp

visual effect zoom out

PLAY "ADMINISTRATION"

get short id of this card

go to card id 11414

put it into field "UpLink"

end mouseUp

** CARD #3, BUTTON #4: Operations

on mouseUp

83

visual effect zoom out

PLAY "OPERATIONS"

get short id of this card

go to card id 14330

put it into field "UpLink"

end mouseUp

* CARD #3, BUTTON #5: Medical ******************************

on mouseUp

visual effect zoom out

PLAY "MEDICAL"

get short id of this card

go to card id 13530

put it into field "UpLink"

end mouseUp

** CARD #3, BUTTON #6: Supply **** **

on mouseUp

visual effect zoom out

PLAY "SUPPLY"

get short id of this card

go to card id 13860

put it into field "UpLink"

84

end mouseUp

** CARD #3, BUTTON #7: Personnel

************* ***********************

on mouseUp

visual effect zoom out

PLAY "PERSONNEL"

get short id of this card

go to card id 14878

put it into field "UpLink"

end mouseUp

**CARD #3, BUTTON #9: ABOUT ARGOS

on mouseUp

visual effect zoom out

PLAY "ABOUT ARGOS"

push card

go to card id 5287

end mouseUp

85

** CARD #5, BUTTON #1: Engine Room

on mouseUp

visual effect zoom out

get short id of this card

go to card id 2790

put it into field "UpLink"

end mouseUp

** CARD #5, BUTTON #2: Deck Profile

on mouseUp

visual effect zoom out

get short id of this card

go to card id 20294

put it into field "UpLink"

end mouseUp

* CARD #6, BUTTON #1: New Button

on mouseUp

visual effect zoom out

86

get short id of this card

go to card id 2790

put it into field "UpLink"

end mouseUp

** CARD #7: Main Eng Rm Perspective

d*******d'************************

ON OPENCARD

ARGOSTALK "ENGIN ROOM LEVEL SLECTION"

END OPENCARD

** CARD #7, BUTTON #1: UPPER LEVEL PORT

on mouseUp

visual effect zoom out

get short id of this card

go to card id 24891

put it into field "UpLink"

end mouseUp

* CARD #7, BUTTON #2: Lower Level Port

87

on mouseUp

visual effect zoom out

get short id of this card

go to card id 26121

put it into field "UpLink"

end mouseUp

* CARD #7, BUTTON #3: Lower Level Stbd 1 of 4

on mouseUp

visual effect zoom out

get short id of this card

go to card id 26624

put it into field "UpLink"

end mouseUp

** CARD #7, BUTTON #4: Upper Level Stbd 1 Of 7

on mouseUp

vist,'al effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

88

** CARD #7, BUTTON #5: Upper Level Stbd 3 of 7

***** *****.** ************************

on mouseUp

visual effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

** CARD #7. BUTTON #6: Upper Level Stbd 4 of 7

** ******** ****** ****** d**************

on mouseUp

visual effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

* CARD #7, BUTTON #7: Upper Level Stbd 5 of 7

on mouseUp

89

visual effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

* CARD #7, BUTTON #8: Upper Level Stbd 6 of 7

***** ***** ** **** *** ** ***** ***

on mouseUp

visual effect zoom out

get sho~i id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

** CARD #7, BUTON #9: Upper Level Stbd 7 of 7

on mouseUp

visual effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

90

** CARD #7, BUTTON #10: Upper Level Stbd 2 of 7

** ******************** **************

on mouseUp

visual effect zoom out

get short id of this card

go to card id 25681

put it into field "UpLink"

end mouseUp

** CARD #7, BUTTON #11: Lower Level Stbd 3 of 4

on mouseUp

visual effect zoom out

get short id of this card

go to card id 26624

put it into field "UpLink"

end mouseUp

* CARD #7, BUTTON #12: Lower Level Stbd 2 of 4

** **.***** *********** *** .**** *******

on mouseUp

91

visual effect zoom out

get short id of this card

go to card id 26624

put it into field "UpLink"

end mouseUp

* CARD #7, BUITON #13: Lower Level Stbd 4 of 4

.*** **************************

on mouseUp

visual effect zoom out

get short id of this card

go to card id 26624

put it into field "UpLink"

end mouseUp

** CARD #8 ************************************

ON OPENCARD

ARGOSTALK "ENGIN ROOM UPPER LEVEL PORT SIDE"

END OPENCARD

* CARD #9 ************************************

ON OPENCARD

92

ARGOSTALK "ENGIN ROOM UPPER LEVEL STARBIRD SIDE"

END OPENCARD

** CARD #10 ************************************

ON OPENCARD

ARGOSTALK "ENGIN ROOM LOWER LEVEL PORT SIDE"

END OPENCARD

* CARD #10, BUTTON #1: Propulsion Gas Turbine 1B

on mouseUp

visual effect zoom out

get short id of this card

go to card id 28371

put it into field "UpLink"

end mouseUp

** CARD #11 ************************************

ON OPENCARD

ARGOSTALK "ENGIN ROOM LOWER LEVEL STARBIRD SIDE"

END OPENCARD

93

** CARD #11, BUTTON #1: Propulsion Gas Turbine IA

on mouseUp

visual effect zoom out

get short id of this card

go to card id 28371

put it into field "UpLink"

end mouseUp

** CARD #12 ************************************

ON OPENCARD

ARGOSTALK "GAS TURBIN MODULE"

END OPENCARD

** CARD #12, BUTTON #1: Gas Turbine in Module

on mouseUp

visual effect zoom out

get short id of this card

go to card id 8729

put it into field "UpLink"

end mouseUp

94

** CARD #13: LM2500 *******************

ON OPENCARD

ARGOSTALK "LM TWENTY 5 HUNDRED GAS TURBIN ENGIN"

END OPENCARD

** CARD #13, BUTTON #1: LM2500 GT Turbine Section

on mouseUp

visual effect zoom out

get short id of this card

go to card id 21321

put it into field "UpLink"

end mouseUp

* CARD #13, BUTTON #2: LM2500 Gas Turbine Eng

on mouseUp

visual effect zoom out

get short id of this card

go to card id 23316

put it into field "UpLink"

95

end mouseUp

* CARD #14 *********************************

ON OVENCARD

ARGOSTALK "GAS TURBIN EXPLODED VIEW 1 AL FA"

END OPENCARD

** CARD #14, BUTTON #1: New Button

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #14, BUTTON #2: Centerbody Assembly

********************** **************

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #14, BUTTON #3: comp rear fr/combustor

Graphic Handler may be found in this cards background

On MouseUp

96

GRAPHIC (number of me)

end MouseUp

* CARD #14, BUTTON #4: comp. rear stator 1 of 2

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #14, BUTTON #5: comp. rear stator 2 of 2

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #14, BUTTON #6: HP COMP STATOR 1 of 2

********** ************ ******** ******

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

97

** CARD #14, BUTTON #7: HP Comp Stator 2 of 2

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #14, BUTTON #8: Compressor Rotor

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #15: HP COMp. Rotor I of 2

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR ROTER"

END OPENCARD

** CARD #15, BUTTON #1: continue

On MouseUp

visual effect zoom out

get short id of this card

98

go to card id 12411

put it into field "uplink"

end MouseUp

** CARD #16 *

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR ROTER CONTINUATION"

END OPENCARD

* CARD #17 ************************************

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR STATER ALTERNET VIEW 3"

END OPENCARD

* CARD #18: HP Comp Stator *****

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR STATER"

END OPENCARD

* CARD #18, BUTTON #1: CLOSE UP

** a'.** s****** se*s*ec**** ******

on mouseUp

visual effect zoom out

99

get short id of this card

go to card id 9423

put it into field "uplink"

end mouseUp

** CARD #19 *

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR STATER ALTERNET VIEW 1"

END OPENCARD

** CARD #19, BUTTON #1: Close up

on mouseUp

visual effect zoom out

get shot'. id of this card

go to card id 9967

put it into field "uplink"

end mouseUp

** CARD #20: HP COMP STATOR *

ON OPENCARD

ARGOSTALK "HIGH PRESSURE COMPRESSOR STATER ALTERNET VIEW 2"

100

END OPENCARD

** CARD #20, BUTTON #1: Close Up

on mouseUp

visual effect zoom out

get short id of this card

go to card id 7832

put it into field "uplink"

end mouseUp

** CARD #21: compressor rear stator

ON OPENCARD

ARGOSTALK "COMPRESSER REAR STATER"

END OPENCARD

* CARD #21, BUTTON #1: CASE ASSY, CSRI

On MouseUp

GRAPHIC (number of me)

end MouseUp

101

CARD #2!, BUTTON #2: CASE ASSY, CSR2

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #21, BUTTON #3 *** **

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #4: LINER, VANE DOVETAIL, LHI

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #5: LINER, VANE DOVETAIL, LH2

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #6: LINER, VANE DOVETAIL, RHi

102

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #7: LINER, VANE DOVETAIL RH2

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #8- VANE, STG 12, CRS

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #9: VANE, STG 13, CRS

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #10: VANE, STG 14, CRS

on mouseUp

103

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUrTON #11: VANE, STG 15, CRS

.*********************** *****

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #12: VANE, STG 16, OGV, CRS

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTYON #13: GASKET, METAL, O-RINGI

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #14: PLUG, MACH-BORESCOPEI

.******** ********* ***** ************

on mouseUp

GRAPHIC (number of me)

104

end mouscUp

** CARD #21, BUTrON #15: BOLT, MACH, DBL HEX HD

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #16: BOLT, BODY BOUND, DBL HEX

***** *** ** ***************** *********

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #17: BOLT, MACH, DBL HEX

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #18: BOLT, BODY BOUND, DBL HEX

on mouseUp

GRAPHIC (number of me)

end mouseUp

105

CARD #21, BUTTON #19: NUT, SELF LOCK, DBL HEX

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #20: KEY, CASING

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #21 *

on mouseUp

GRAPHIC (number of me)

end mouseUp

** CARD #21, BUTTON #22 **********

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #23: GASKET, METAL, O-RING2

106

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #25: PLUG, MACH-BORESCOPE2

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #26: PLUG, MACH-BORESCOPE3

** ***~******* ************************

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #27: CASE, ASSY, CSR3

on mouseUp

GRAPHIC (number of me)

end mouseUp

* CARD #21, BUTTON #28: CASE, ASSY, CSR4

on mouseUp

107

GRAPHIC (number of me)

end mouseUp

* CARD #22 ************************************

ON OENCARD

ARGOSTALK "CENTER BODY, INLET, COMPRESSER FRONT FRAME"

END OPENCARD

** CARD #23: comp rear fr/combustor

ON OPENCARD

ARGOSTALK "COMPRESSER REAR FRAME, COMBUSTER"

END OPENCARD

* CARD #23, BUTTON #1: Air Seals

on mouseUp

visual effect zoom out

get short id of this card

go to card id 2535

put it into field "uplink"

end mouseUp

* CARD #25 ************************************

108

ON OPENCARD

ARGOSTALK "GAS TURBIN EXPLODED VIEW 1 BRA VO"

END OPENCARD

* CARD #26 ************************************

ON OPENCARD

ARGOSTALK "Inlet Gearbox Assembly Breakdown"

END OPENCARD

** CARD #26, BUTTON #1: GEARBOX ASSY, INLET

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #2: ADAPTER, SHAFT, GEAR

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #3: SHIM C*C*CCCC**C*CC***C***C**C*C*C*****C

Graphic Handler may be found in this cards background

On MouseUp

109

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #4: ADAPTER PLATE

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #5: ADAPTER BLOCK

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #6: ADAPTER, BLOCK, INTERNAL

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

110

CARD #26, BUTTON #7: HOUSING ASSY

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #8: HOUSING, BRNG-GEAR SHAFT

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #9: SCREW, MACHIINE,1O-32UNF

.**** ******* *** *********************

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #10: SHIM ASSY, LAMINATED

-- Graphic Handler may be found in this cards background

111

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #11: ADAPTER ASSY-INLETGEARBX

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #12: PACKING,PREFORMED, VITON

****.*** *********** ******************

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #13: NUT, PLAIN, SHAFT

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

112

** CARD #26, BUTTON #14: GEARSHAFT, BEVEL

******** ********** *** ***************

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #15: RING, RETAINING

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #16: NUT, SELFLOCKING,GANG CH

** ** * *** ***** ** *** *** *** ** *** **** ***

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #17: RETAINER, BRNG, DUPLEX

-- Graphic Handler may be found in this cards background

On MouseUp

113

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTIrON #18: BRNG, BALL

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #19: NOZZEL, OIL1

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #20: NOZZEL,OIL2

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

114

** CARD #26, BUTTON #21: HOUSING, BRNG, ROLLER

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #22: BRNG, ROLLER, CYLINDRICAL

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUITON #23: RETAINER, BEARING

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #24: NUT, SELF LOCKING,DBLHEX2

*** ********* ****** ** ***** **** *

-- Graphic Handler may be found in this cards background

On MouseUp

115

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #25: NUT, SELF LOCKING DBLHEXI

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

* CARD #26, BUTTON #26: NOZZEL ASSY, OIL

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

CARD #26, BUTTON #27: BOLT, MACH, DBLHEX

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

116

CARD #26, BUTTON #28: NUT, SELF LOCK, DBLHEX

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #26, BUTTON #29: BOLT, MACHINE, AMS 6322

-- Graphic Handler may be found in this cards background

On MouseUp

GRAPHIC (number of me)

end MouseUp

** CARD #34, BUTTON #1: Return

on mouseUp

pop card
end mouseUp

117

APPENDIX B

APL STACK

uii

0

w. 0 0 I II.

0 0 0. 0CC

= u-

LJ (J LO J
J~t O. zzn

Z M

I' - -©

ILA
L)(/

a. M
11,E -i (m (L

a- 0 (A L6~ .

z 4 Z u z1z18

118

CD'

L r

(4) 4L 0-

11

APPENDIX C

CSMP STACK

ui C4

>J 3g. -. jJ

hi cn a3 o

3 _ J
_ 0 -a =m

NWC

' z x .

UU wg t

o c

120

LLL.

6-1

(L) CL zwC U
On be C L2,45 cL

121

SCRIPTS FOR STACK: CSMP

** STACK SCRIPT *

on closestack

if the freesize of this stack > 0.15 * the size of this stack then

doMenu "Compact Stack"

end if

end closestack

on gohome

play "BYE"

end gohome

function CLICKLINE

return trunc(((scroll of the target)-,

+ (item 2 of the clickloc) - (item 2 of the rect of the target-,

)) div the textheight of the target) + 1

end CLICKLINE

function JULIANDATE

-- returns julian date

put the date into CURRENT

122

convert CURRENT to seconds

put "1/I/" into FIRSTDATE

put char 4 to 5 of third item of the long date after FIRSTDATE

convert FIRSTDATE to seconds

put char 5 of third item of the long date into YEAR

return YEAR & (CURRENT - FIRSTDATE) div 86400 + 1

end JULIANDATE

** BKGND #1, FIELD #1: Description

on mouseup

show card picture

set visible of field "Description" to false

repeat with i=1 to the number of buttons

show button i

end repeat

show background button "sorry"

end mouseup

** BKGND #1, FIELD #29: FIELD CHOICE

on mouseup

put line clicklineO of me into fieldname

hide me

123

ask"Please enter Search String."

put "find" && quote & it & quote && "in field" && --

quote & fieldname & quote into msg

hide msg

send returnkey to hypercard

end mouseup

* BKGND #1, BUTTON #1: HELP ****************** ***********

on mouseUp

PLAY "HELP"

push this card

go to stack "ARGOS HELP"

end mouseUp

** BKGND #1, BUTTON #2: Find ******************************

on mouseUp

put empty into fid "FIELD CHOICE"

repeat with count = 1 to number of fids

put the short name of fid count & return after fid "field choice"

end repeat

PLAY "SEARCH"

show fid "field choice"

answer "Please select search field"

end mouseUp

124

** BKGND #1, BUTTON #3: LIBRARY

on mouseUp

PLAY "LIBRARY"

push card

go to card library OF STACK "ARGOS"

end mouseUp

** BKGND #1, BUTTON #4: EXIT **********************************

on mouseUp

gohome

go home

end mouseUp

** BKGND #1, BUTTON #5: PRINT * **

on mouseUp

set visible of background btn "COVER" to true

doMenu Print Card

set visible of background btn "COVER" to false

end mouseUp

** BKGND #1, BUTTON #6: Return

on mouseUp

play "RETURN"

125

pop card

play "Navigate Mode"

end mouseUp

* BKGND #1, BUTTON #7: COVER *

on mousewithin

SET THE VISIBLE OF me TO FALSE

end mousewithin

on mouseenter

SET THE VISIBLE OF me TO FALSE

end mouseenter

**BKGND #1. BUTTON #8: DELETE

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = I then

exit repeat

end if

end repeat

end mouseUp

126

** BKGND #1, BUTTON #9: LOCK/UNLOCK

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF rr o "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SE THE LOCKE OF FIELD COUNT TO NOT LO(XTEXT OF FIELD COUNT

END REPEAT

end mouseUp

* BKGND #1, BUTTON #10: WORK PKG

* ********* ***** ***** ********

on mouseUp

go to card id 6397

end mouseUp

** BKGND #1, BUTTON #11: Prev *

on mouseStilIDown

visual effect scroll left

go to prev card of BACKGROUND "CSMP"

end mouseStilIDown

* BKGND #1, BUTTON #12: Next *

127

on mouseStillDown

visual effect scroll right

go to next card of BACKGROUND "CSMP"

end mouseStilDown

* BKGND #1, BUTTON #13: ADD AWR

on mouseUp

PLAY "2K"

push card

lock screen

go to stack EQUIPMENT

put field "UIC" into UIC

go to first card of stack "CSMP"

domenu new card

put JULIANDATE0 into field "WD DATE"

put UIC into field "UIC"

unlock screen

select text of field "WC"

end mouseUp

* BKGND #2, FIELD #1: PRINT CHOICE

on mouseup

put line clickline0 of me into SORTNAME

128

ask "What is the Print Criteria?"

go to first card

lock screen

repeat for (the number of cards)

if (the short id of this card C 6397) then

put fld sortname into SORTVAL

if SORTVAL = it then

unlock screen

print card

lock screen

end if

end if

go next

end repeat

end mouseup

129

APPENDIX D

EQUIPMENT STACK

4I

IL

E 09

.. = ==.
S 30

IL La LL.

0.130

....

o0)J: -
ie 0L-C L z C

131

APPENDIX E

COSAL STACK

< 0

- - 0 0

~o -o ol 0UN

<:[I () ¢) I))"

UU (

o

e,- i -,0

0 0)

E E.

I- d o

E0 0 0)

E u

0 00¢

0 00

I,....

,. 0

z '6.1 0) 0 0,.

-2- -, ,

132

-02

omu- 0 w

mii 0- w w~ 0 w z4O. U
'- ~= rLI "' U

u-I-n Z4O <wWwu I D
O)~z e~o~u uo a
(.flzi-~~ Uri-.0e_ - or

ZZ< 0< Z OJWW~

133

APPENDIX F

HELP STACK

CL wl~

- v-a.) i V
k~ oV

E 4Aix>)

1341

0 0 1.

41

06 ~
'A d)

0 all~

% 135

- UW0V.4
0 0 KI

' EZ
k. 'A1 0

-W V

o- x2 0.0> 2.0.4F " -
0>5r

~
1E

'AI

136

wil
'C

26
*

.w-

V1 ~*

,w 0 1.2 'a0)~ial FAIIJW
*Q
N 0

'Ai h

13

SCRIPTS FOR STACK: ARGOS HELP

** STACK SCRIPT *

on openStack

hide menuBAR

hide message box

end openStack

* BKGND #1, BUTTON #1: Next * * * * ** ** *

on mouseUp

visual effect wipe left

go to next card of background "HELP"

end mouseUp

* BKGND #1, BUTTON #2: RETURN

.******** ****** ****.*******uI*****

on mouseUp

POP CARD

end mouseUp

* BKGND #I. BUTTON #3: Prev *********************************

on mouseUp

visual effect wipe right

138

go to previous card of BACKGROUND "HELP"

end mouseUp

* BKGND #1, BUTTON #4: READ *

on mouseUp

OPEN FILE "NPSCS:hypercardhelp"

REPEAT

repeat with count = 1 to 16

READ FROM FILE "NPSCS:hypercardhelp" UNTIL RETURN

IF IT IS EMPTY THEN EXIT MOUSEUP

PUT IT AFTER background FIELD "TEXTI"

end repeat

repeat with count = 1 to 16

READ FROM FILE "NPSCS:hypercardhclp" UNTIL RETURN

IF IT IS EMPTY THEN EXIT MOUSEUP

PUT IT AFTER background FIELD "TEXT2"

end repeat

domenu New Card

END REPEAT

CLOSE FILE "NPSCS:hypercardhelp"

end mouseUp

139

** BKGND #1, BUTTON #5: Find ************************************

on mouseUp

ask "Input the search string:

find it

hide msg

put "find" && it into msg

hide msg

end mouseUp

** BKGND #1, BUTTON #6: PRINT * **

on mouseUp

doMenu Print Card

end mouseUp

** BKGND #1, BUTTON #7: LIBRARY

on mouseUp

PLAY "LIBRARY"

push card

go to card library OF STACK "ARGOS"

end mouseUp

** BKGND #1, BUTTON #8: EXIT **********************************

on mouseUp

gohome

140

go home

end mouseUp

141

APPENDIX G

FORMS STACK

z JU
>

*~c A.4 I

0- > -Ij

7- u 1

~U)-. p A
41 Z Z &

0 -

LrL . Q U)
0 ZZ

CL -W

z 0

CL V)

1420

LL

* - w

Q ~ ~ 200L

0- Z - :I- < M z

w wzZ LL

143

SCRIPTS FOR STACK: FORMS

** STACK SCRIPT ** ****************

on closestack

if the freesize of this stack > 0.15 * the size of this stack then

doMenu "Compact Stack"

end if

end closestack

on gohome

play "BYE"

end gohome

function CLICKLINE

return trunc(((scroll of the target)-,

+ (item 2 of the clickloc) - (item 2 of the rect of the target-,

)) div the textheight of the target) + I

end CLICKLINE

on ZAK

put empty into fld "APPROVED"

set the locktext of fid "APPROVED" to false

144

click at the location of fld "APPROVED"

type "Steven Decatur, LCDR, USN"

set the locktext of fid "APPROVED" to true

end ZAK

on PIERRE

put empty into fid "APPROVED"

set the locktext of fld "APPROVED" to false

click at the location of fid "APPROVED"

type "J.P.Jones, LCDR, USN"

set the locktext of fld "APPROVED" to true

end PIERRE

* BACKGROUND #1: NAVSUP 1250

on returnkey

if (char 1 to 11 of msg) = "find string" then

put the id of this card into tempid

if visible of field "Description" then

set lockscreen to true

send returnKey to Hypercard

if tempid <> id of this card then

go recent card

hide card picture

set visible of field "Description" to true

145

repeat with i= to the number of buttons

hide button i

end repeat

hide background button "sorry"

end if

set lockscreen to false

else

send retumKey to Hypercard

end if

else

send returnKey to Hypercard

end if

end returnKey

** BKGND #1, FIELD #9: REQN QTY

on closefield

if field "UNIT PRICE" is not empty then

put field "UNIT PRICE" times field "REQN QTY" into field "OBL AMT"

end if

end closefield

** BKGND #1, FIELD #27: QTY ************* ***********

on closefield

if field "UNIT PRICE" is not empty then

146

put field "UNIT PRICE" times field "QTY" into field "EXTENDED PRICE"

end if

end closefield

* BKGND #1, FIELD #28: UNIT PRICE

* *********** **********************

on closefield

set numberFormat to ".00"

if field "REQN QTY" is not empty then

put (field "UNIT PRICE" * field "REQN QTY") into field "OBL AMT"

end if

if field "QTY" is not empty then

put (field "UNIT PRICE" * field "QTY") into field "EXTENDED PRICE"

end if

end closefield

** BKGND #1, BUTTON #1: HELP ************************************

on mouseUp

PLAY "HELP"

push this card

go to stack "ARGOS HELP"

end mouseUp

** BKGND #1, BUTTON #2: Find *** ***********************

on mouseUp

147

PUSH CARD

PLAY "SEARCH"

GO TO CARD ID 4322

end mouseUp

* BKGND #1, BUTTON #3: LIBRARY

on mouseUp

PLAY "LIBRARY"

push card

go to card library OF STACK "ARGOS"

end mouseUp

* BKGND #1, BUTTON #4: EXIT *

on mouseUp

gohome

go home

end mouseUp

** BKGND #1, BUTTON #5: PRINT *

on mouseUp

set visible of background btn "COVER" to true

doMenu Print Card

set visible of background btn "COVER" to false

end mouseUp

148

BKGND #1, BUTTON #6: Return

on mouseUp

play "RTR.N"o

pop card

play "Navigate Mode"

end mouseUp

SBKGND #1, BUTTON #7: AUTOTAB

on mouseUp

REPEAT WITH COUNT =1I TO NUMBER OF FIELDS

SET THE TEXTSTYLE OF FIELD COUNT TO BOLD

END REPEAT

end mouseUp

~''BKGND #1, BUTTON #8: APPROVE

on mouseUp

play "PASSWORD PLEASE"

end mouseUp

SBKGND #1, BUTTON #9: COVER *~~***************

on mousewithin

149

SET THE VISIBLE OF me TO FALSE

end mousewithin

on mouseenter

SET THE VISIBLE OF me TO FALSE

end mouseenter

** BKGND #1, BUTTON #10: AWR ****************4* ************

on mouseUp

set LockScreen to TRUE

put field "NOUN NAME OR REF SYM" into NOUNNAME

put field "WC" into WC

put field "APL/AEL/CID" into APL

put field "RDD" into DEADDATE

put field "UIC" into UIC

put field "JSN" into JSN

put field "EIC" into EIC

put field "REQN DATE" into REQNDATE

go to stack equipment

find APL in field "APL"

put field "LOCATION" into LOCATION

go to stack csmp

go to first card of background "CSMP"

domenu new card

put DEADDATE into field "DEAD DATE"

put REQNDATE into field "WD DATE"

150

put REQNDATE into field "DEF DATE"

put NOUNNAME into field "NOUN NAME"

put APL into field "APL"

put UIC into field "UIC"

put WC into field "WC"

put EIC into field "EIC"

put JSN into field "JSN"

put LOCATION into field "LOCATION"

set LockScreen to FALSE

select text of field "ID SER"

end mouseUp

** BKGND #1, BUTTON #11: DELETE

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT < "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = I then

exit repeat

end if

end repeat

end mouseUp

151

*' BKGND #1, BUTTON #12: Prey * **

on mouseStillDown

visual effect scroll left

go to prey card of background "NAVSUP 1250"

end mouseStillDown

** BKGND #1, BUTTON #13: Next *** *

on mouseStillDown

visual effect scroll right

go to next card of background "NAVSUP 1250"

end mouseStillDown

** BKGND #2, FIELD #1: FIELD CHOICE

********************** ******** ******

on mouseup

put line clickline0 of me into FIELDNAME

ask "Search Criteria?"

POP CARD

put "find" && quote & it & quote && "in field" && --

quote & FIELDNAME & quote into msg

hide msg

send returnkey to HyperCard

end mouseup

152

APPENDIX H

DEVELOPERS SCRIPTS

The following scripts were used in the development of Argos. They are all

contained in either hidden buttons or hidden fields in the Argos stacks. The

first script is not contained in any stack, but may be used in a new button to

show all hidden buttons.

** script to show ALL hidden background buttons **

on mouseUp

repeat with count = I to number of background buttons

show background button count

end repeat

end mouseUp

153

Argos Stack Developers Scripts

********** *** *** *

** BKGND #1, FIELD #4: BUTTONS ***********************************

* used to auto insert cardlink of an item into the field "DATA" *

on mouseup

GLOBAL CARDID

put CARDID into SECOND ITEM OF line-n

(clicklineo) of field "DATA"

SET VISIBLE OF FIELD "BUTTONS" TO FALSE

show card picture

REPEAT WITH COUNT = 1 TO NUMBER OF CARD BUTTONS

set visible of button COUNT to true

END REPEAT

end mouseup

** BKGND #1, BUTTON #15: GRAPHICS REWRITE *

* This script rewites the script of all the graphic card buttons on a card *

on mouseup

REPEAT WITH COUNT = 1 TO NUMBER OF CARD BUTTONS

set the script of button COUNT to-,

"-- Graphic Handler may be found in this cards background"-,

154

& return & "On MouseUp" & return &-

"GRAPHIC (number of me)" & return & "end MouseUp"

end repeat

end mouseup

** BKGND #1, BUTTON #19: INSERT PARTNUMBER

** This script rewites the script of card buttons on a card *

** The functionality of this script was not used in the final version of Argos

on mouseUp

GLOBAL BUTrONNAME

GLOBAL CARDID

PUT EMPTY INTO BUTITONNAME

PUSH CARD

ASK "INPUT PARTNUMBER"

GO TO STACK COSAL

FIND IT IN FIELD "PART NUMBER"

PUT SHORT ID OF THIS CARD INTO CARDID

POP CARD

hide card picture

REPEAT WITH COUNT = I TO NUMBER OF CARD BUTTONS

set visible of button COUNT to false

END REPEAT

IF FIELD "BUTTONS" IS EMPTY THEN

155

REPEAT WITH COUNT = 1 TO NUMBER OF CARD BUTTONS

PUT ((short name of CARD BUTTON COUNT) & "," & COUNT-,

& RETURN) AFTER FIELD "BUTTONS"

END REPEAT

END IF

ANSWER "PLEASE SELECT BUTTON NAME"

SET VISIBLE OF FIELD "BUTTONS" TO TRUE

end mouseUp

* BKOND #1, BUTTON #20: NONENONE

** This script places NONE, NONE on all lines of the field DATA for intermediate

* development. **

on mouseUp

ANSWER "ARE YOU SURE"

IF IT o "OK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF CARD BUTTONS

PUT "NONE, NONE" INTO LINE COUNT OF FIELD "DATA"

END REPEAT

end mouseUp

* BKGND #1, BUTTON #21: SOMETHING.NONE

156

** This script places NONE as the second element on all lines of the field DATA

* for intermediate development. *

on mouseUp

ANSWER "ARE YOU SURE"

IF IT o "OK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF CARD BUTTONS

PUT (CHAR 17 TO 25 OF LINE 4 OF THE SCRIPT OF BUTTON COUNT)-,

& ", NONE" INTO-,

LINE COUNT OF FIELD "DATA"

END REPEAT

end mouseUp

* CARD #4, BUTTON #1: other *

** This script was used to demonstrate graphics **

*' for intermediate development. **

on mouseUp

put the userLevel into saveLevel

if the userLevel < 3 then set userLevel to 3 -- "Painting"

if the userLevel < 3 then exit mouseUp

choose lasso tool

get the Ioc of me

put first item of it into Sizel

157

put second item of it into second item of sizel

click at sizel with commandKey

DoMenu copy picture

set dragSpeed to 150

drag from sizel to 238,130

choose browse tool

set userLevel to saveLevel

pass mouseup

end mouseUp

** CARD #4, BUTTON #2: SHIP ***********

** This script was used to demonstrate graphics *

** for intermediate development. **

on mouseUp

put the userLevel into saveLevel

if the userLevel < 3 then set userLevel to 3 -- "Painting"

if the userLevel < 3 then exit mouseUp

put the loc of button "missile" into misstart

-- 394,246

put first item of misstart into missileSize

put second item of misstart into second item of missileSize

repeat with i = I to 50

set loc of button missile to 394,246-i

158

end repeat

set loc of button missile to missileSize

choose lasso tool

get the loc of me

put first item of it into Sizel

put second item of it into second item of sizel

click at size l with commandKey

DoMenu copy picture

set dragSpeed to 150

drag from sizel to 75,248

domenu flip horizontal

drag from 75,248 to size 1

domenu flip horizontal

choose browse tool

set userLevel to saveLevel

pass mouseup

end mouseUp

159

APL Stack Developers Scripts

************.*******.*** **.*********************************

** script to delete all but one card in APL *

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

go first card of background apl

repeat

domenu delete card

go next card of background apl

if (short id of first card of background apl) -

(short id of last card of background apl) then

exit repeat

end if

end repeat end mouseUp

** script to read data from a text file into the APL stack *

on mouseUp

ASK "WHAT IS THE PASSWORD?"

F IT o "ZAK" THEN EXIT MOUSEUP

160

PUT "NPS-CS:THESIS:RAW DATA:APL" INTO FILENAME

open file FILENAME

repeat 236 times

read from file FILENAME for 1107

end repeat

repeat 2379 times

read from file FILENAME for 1107

put (char (1) to (11) of it) into field "APL"

put (char (12) to (59) of it) into field "NOMENCLATURE"

put (char (60) to (68) of it) into field "NIIN"

put (char (69) to (1054) of it) into field "CHARACTERISTICS"

put (char (1055) to (1059) of it) after field "FSCM"

put (char (1060) to (1061) of it) into field "AINAC"

put (char (1062) to (1063) of it) into field "LSSC"

put (char (1064) of it) into field "COG"

put (char (1065) to (1066) of it) into field "ID"

put (char (1067) of it) into field "AEL COL NUM"

put (char (1068) of it) into field "FLAG"

put (char (1069) to (1073) of it) into field "DATE"

put (char (1074) to (1076) of it) after field "USER"

put (char (1077) to (1080) of it) into field "EQU CNT"

put (char (1081) to (1086) of it) into field "POPULATION"

put (char (1087) of it) into field "SECTION"

domenu New Card

end repeat

161

close file FILENAME end mouseUp

** script to toggle between locking and unlocking text fields in the APL stack

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE LOCKTEXT OF FIELD COUNT TO NOT LOCKTT OF FIELD COUNT

END REPEAT end mouseUp

162

COSAL Stack Developers Scripts

* script to read data from a text file into the Cosal stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

put "NPS-CS:THESIS:RAW DATA:COSAL" into FILENAME

open file FILENAME

repeat 16429 times

read from file FILENAME for 99

end repeat

repeat 5 times

read from file FILENAME for 99

if it is empty then

exit repeat

end if

put (char (1) to (11) of it) into field "APL"

put (char (12) to (41) of it) into field "PART NUMBER"

put (char (42) to (46) of it) into field "FSCM"

put (char (47) Lo (61) of it) into field "STOCK NUMBER"

put (char (62) to (80) of it) into field "ITEM NAME"

163

put (char (81) to (82) of it) into field "COG CODE"

put (char (83) to (84) of it) into field "UNIT OF ISSUE"

put (char (85) of it) into field "MATL CONTROL CODE"

put (char (86) of it) into field "SPCL MATL CONTENT CODE"

put (char (87) to (89) of it) into field "QUANTITY/APPLICATION"

put (char (90) to (91) of it) into field "SOURCE CODE"

pu. (char (92) to (93) of it) into field "MAINTENANCE CODE"

put (char (94) of it) into field "RECOVERABILITY CODE"

put (char (95) of it) into field "ALLOWANCE NOTE CODE"

put (char (96) to (98) of it) into field "ALLOWED QUANTITY"

put (char (99) of it) into field "MEC-PT-TO-CMPNT"

domenu New Card

end repeat

close file FILENAME end mouseUp

** script to delete all but one card in COSAL **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = I then

exit repeat

164

end if

end repeat end mouseUp

** script to toggle between locking and unlocking text fields in the COSAL

stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE LOCKTEXT OF FIELD COUNT TO NOT LOCKTEXT OF FIELD COUNT

END REPEAT end mouseUp

** script to delete all but one card in COSAL *

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = 1 then

exit repeat

end if

165

end repeat end mouseUp

* script to toggle between locking and unlocking text fields in the COSAL

stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE LXOCKTEXT OF FIELD COUNT TO NOT LOCKIEXT OF FIELD COUNT

END REPEAT end mouseUp

** script to change all fields to textstyle bold in the COSAL stack **

on mouseUp

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE TEXTSTYLE OF FIELD COUNT TO BOLD

END REPEAT end mouseUp

166

CSMP Stack Developers Scripts

** script to delete all but one card in CSMP stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = I then

exit repeat

end if

end repeat end mouseUp

** script to toggle between locking and unlocking text fields in the CSMP stack

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = I TO NUMBER OF FIELDS

167

SET THE LOCKTEXT OF FIELD COUNT TO NOT LXOCKTX OF FIELD COUNT

END REPEAT end mouseUp

168

EQUIPMENT Stack Developers Scripts

* script to delete all but one card in EQUIPMENT stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

go first card of background apl

repeat

domenu delete card

go next card of background apl

if (short id of first card of background apl) =-

(short id of last card of background apl) then

exit repeat

end if

end repeat end mouseUp

** script to toggle between locking and unlocking text fields in the equipment

stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

169

IF T <> "ZAK" THEN EXIT MOUSEUP

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE LOCKTEXT OF FIELD COUNT TO NOT LOCKMhXT OF FED COUNT

END REPEAT end mouseUp

** script to read data from a text file into the EQUIPMENT stack **

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT <> "ZAK" THEN EXIT MOUSEUP

PUT "NPS-CS:THESIS:RAW DATA:equipment" INTO FILENAME

open file FILENAME

repeat 7420 times

read from file FILENAME for 303

end repeat

repeat 10 times

read from file FILENAME for 303

put (char (1) to (10) of it) into field "SWLIN"

put (char (11) to (21) of it) into field "APL"

put (char (22) to (26) of it) into field "PRIME KEY"

put (char (27) to (46) of it) into field "ESD"

put (char (47) to (66) of it) after field "ESN"

put (char (67) to (78) of it) into field "EIC"

put (char (79) to (93) of it) into field "SN"

put (char (94) to (105) of it) into field "LOCATION"

170

put (char (106) to (109) of it) into field "WC EQPT"

put (char (110) to (113) of it) into field "WC CMPT"

put (char (114) to (139) of it) after field "TYPE/MODEL"

put (char (140) to (187) of it) into field "FUNCTIONAL DESC"

put (char (188) to (192) of it) into field "PHM RIN"

put (char (193) to (193) of it) into field "SEL EQPT IND"

put (char (194) to (203) of it) into field "SAC"

put (char (204) to (204) of it) into field "SVC IMP"

put (char (205) to (205) of it) after field "MIL ESSENTIAL"

put (char (206) to (216) of it) into field "PARENT APL"

put (char (217) to (231) of it) into field "PARENT SN"

put (char (232) to (232) of it) into field "CAT"

put (char (233) to (239) of it) into field "SCAT"

put (char (240) to (245) of it) into field "QTY APPL"

put (char (246) to (247) of it) after field "DATA ORIG"

put (char (248) to (248) of it) into field "INSTAL STATUS"

put (char (249) to (250) of it) into field "VAL SPC ACT"

put (char (251) to (251) of it) into field "RNV"

put (char (252) to (258) of it) into field "AILSIN"

put (char (259) to (266) of it) into field "UPDATE JCN"

put (char (267) to (271) of it) after field "LAST UPDATE"

put (char (272) to (274) of it) into field "LAST UPDATE USER"

put (char (275) to (283) of it) into field "UIC"

put (char (284) to (284) of it) into field "TYPE #"

put (char (285) to (295) of it) into field "FLAGS"

171

put (char (296) to (300) of it) into field "FSCM"

put (char (301) to (301) of it) after field "AEL COL #"

put (char (302) to (302) of it) into field "COS TYPE"

put (char (303) to (303) of it) into field "ALT FLAG"

domenu New Card

end repeat

close file FILENAME end mouseUp

** script to change all firds to textstyle bold in the EQUIPMENT stack **

on mouseUp

REPEAT WITH COUNT = I TO NUMBER OF FIELDS

SET THE TEXTSTYLE OF FIELD COUNT TO BOLD

END REPEAT end mouseUp

* script to delete all but one card in FORMS stack *

on mouseUp

ASK "WHAT IS THE PASSWORD?"

IF IT o "ZAK" THEN EXIT MOUSEUP

repeat

domenu delete card

go next card

if number of this card = 1 then

exit repeat

172

end if

end repeat end mouseUp

173

FORMS Stack Developers Scripts

**************************** ************************* ***a*** *

** script to change all fields to textstyle bold in the FORMS stack **

on mouseUp

REPEAT WITH COUNT = 1 TO NUMBER OF FIELDS

SET THE TEXTSTYLE OF FIELD COUNT TO BOLD

END REPEAT end mouseUp

174

BIBLIOGRAPHY

Akscyn, R. M., McCracken, D. L., Yoder, E., "KMS: A Distributed Hypermedia
System for Managing Knowledge in Organizations," Communications of the ACM,
v. 31 no. 7, July 1988.

Anderson, J., Fishman, B., "The Smalltalk Programming Language: An

Introduction to Object-Oriented Prograimning," Byte, August 1986.

Apple Computer, Inc., HyperCardlm User's Guide, 1987.

Apple Professional Developers Association (APDA), HyperCardTu Script Language
Guide, The HyperTalkTm Language, Draft, I 1 August 1987.

Brodie, M. L., "On the Development of Data Models," In: Brodie, M. L.
Mylopoulos, J., Schmidt, J. W., editors. On Conceptual Modelling. Springer-
Verlag, New York, 19-47, 1984.

Chickering, J. E., "The Advent of the Paperless Ship," Naval Engineers Journal,
May 1988.

Conklin, J., "Hypertext: An Introduction and Survey," IEEE, September 1987.

Conklin, J., "Hypertext: An introduction and Survey," IEEE Computer, September
1987.

Dadam, P., and others, "A DBMS Prototype to Support Extended NF2 Relations:
An Integrated View on Flat Tables and Hierarchies," 1986 ACM 0-89791-191.

Goldberg, A., and Robson, D., Smalltalk-80: The Language and its Implementation,
Reading, MA, Addison-Wesley, 1983.

Goldberg, A., Robson, D., "Smalltalk Programming Language," Software World,
pp. 2-10, 1983.

Goodman, D., The Complete HyperCardm Handbook, Bantam Computer Books,
1987.

Gruendig, L., Pistor, P.: Landinformation-ysteme und ihre Anforderungen an
Datenbank-schnittstellen.

Haerder, T., Reuter, A., Database Sytems for Nonstandard Applications Proc. Int.
Computing Symposium (I0. Schneider, ed.), Erlangen, West Germany, March
1983, Teubner-Verlag, Stuttgart, pp. 452-466.

175

Halasz, F. G., "Reflections on NoteCards: Seven Issues for the Next Generation of

Hypermedia Systems," Communications of the ACM, v. 31, no. 7, July 1988.

Harvey, G., Understanding HyperCard for Version 1.1, SYBEX, 1988.

Kaehler, T., Patterson, D., "Small Taste of Smailtalk," Byte, August 1986.

Kent, William, "Limitations of Record-Based Information Models," ACM
Transactions on Database Systems, v. 4, no. 1, March 1979.

Korth, H. F., Silberschatz, A., Database System Concepts, McGraw-Hill, 1986.

Korth, H. F., Silberschatz, A., Database System Concepts, Mcgraw-Hill Book
Company, 1986.

Lone, R. A., "Issues In Databases for Design Applications," File Structures and
Data Bases for CAD, North-Holland Publishing Company, IFIP, 1982.

Lone, R., and others, User Interface and Access Techniques for Engineering
Databases, IBM Research Laboratory, San Jose, CA 95193, 1984.

MacLennan, B. J., Principles of Programming Languages, New York, Holt,
Rinehart and Winston, 1987.

McCracken D. L., Akscyn, R. M., "Experience with ZOG Human-Computer
Interface System," IntJ. Man-Machine Studies, v. 21,293-310, 1984.

Perkins, R. C., "Data Analysis The Key to Data Base Design," QED Information
Sciences, Inc. Wellesley, MA, 1984.

Ruff, D., LCdr, USN, from: "The Advent of the Paperless Ship," Naval Engineers
Journal, July 1988, pp 157-159.

Schek, H. J., Pistor, P., "Data Structures for an Integrated DataBase Management
and Information retrieval System," Proceedings of the Eighth International
Conference on Very Large Data Bases, Mexico City, September, 1982.
Schumaker, K. J., Fishman, B., "Object Oriented Language for the Macintosh: An
Overview of the Languages and Their Capabilities," Byte, August 1986.

Shafer, D., HyperTalk "wProgramming, first edition, 1988.

Suzuki, N., "Smalltalk-80: An Object-Oriented Language," Systems and Control,
January 1985.

Wu, C. T., "An Effect of Set Type To Query Formulation in Relational DataBase
Systems," Unpublished Manuscript, Naval Postgraduate School, Monterey, CA
93943.

176

Wu, C.T., "An Effect of Set Type To Query Formulation in Relational DataBase
Systems," Unpublished Manuscript, Naval Postgraduate School, Monterey, CA
93943.

177

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Office of Naval Research
Office of the Chief of Naval Research
Attn: CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command
Attn: LCDR Topperoff
Nation Center 1, Room 11 N08
2511 Jefferson Davis Hwy
Washington, D.C. 20363-5100

5. Office of the Chief of Naval Operations
Attn: Capt Don RhodesUSN
Code OP-403
Washington, D.C. 20350-2000

6. Department of the Navy
Naval Sea Systems Command
Attn: Mr. Clifford Gieger Code: Cheng L
Washington, D.C. 20362-5101

7. Office of the Secretary of Defense
Attn: CDR BarberUSN
STARS Program Office
Washington, D.C. 20301

8. Office of the Secretary of Defense
Atm: Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

178

9. Commanding Officer
Naval Research Laboratory
Code 5150
An: Dr. Elizabeth Wald
Washington, D.C. 20375-5000

10. Navy Ocean System Center
Atn: Linwood Sutton, Code 423
San Diego, California 92152-5000

11. National Science Foundation
Division of Computer and Computation Research
Washington, D.C. 20550

12. Department of the Navy
Naval Sea Systems Command
Attn: Mr. Phil Styles Code: CEL-TD1
Washington, D.C. 20362-5101

13. Department of the Navy
Naval Sea Systems Command
Atn: Mr. Mike Mehalic Code: CEL-PAB
Washington, D.C. 20362-5101

14. Office of Naval Research
Computer Science Division, Code 1133
Atn: Dr. Van Tilburg
800 N. Quincy Street
Arlington, Virginia 22217-5000

15. David W. Taylor Naval Ship R&D Center
Attn: Mr J. Hawkins Code: 1740.2
Bethesda, Maryland 20084-5000

16. Navy Management Systems Support Office
Detachment Pacific
Atn: Mr. Lyle Rich Code: 311
Naval Station Box 217
San Diego, California 92136-5217

17. Commander Naval Security Group Command 2
Code: G-30
3801 Nebraska Ave. NW
Washington, D.C. 20390-5211

179

18. Commanding Officer I
U.S. Naval Security Group Activity
Misawa, Japan
APO San Francisco, Ca. 96519-0006

19. Commanding Officer 2
USS Jarrett (FFG-33)
Attn: CDR B.B. Giannotti, USN
FPO San Francisco, California 96519

20. U.S. Naval Security Group Activity 2
Atm: Lt. Kevin F. Duffy, USN
Misawa, Japan
APO San Francisco, Ca. 96519-0006

180

